These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


160 related items for PubMed ID: 36669493

  • 21. Astrocyte progenitor transplantation promotes regeneration of bulbospinal respiratory axons, recovery of diaphragm function, and a reduced macrophage response following cervical spinal cord injury.
    Goulão M, Ghosh B, Urban MW, Sahu M, Mercogliano C, Charsar BA, Komaravolu S, Block CG, Smith GM, Wright MC, Lepore AC.
    Glia; 2019 Mar; 67(3):452-466. PubMed ID: 30548313
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Transplantation of human neural stem cells for spinal cord injury in primates.
    Iwanami A, Kaneko S, Nakamura M, Kanemura Y, Mori H, Kobayashi S, Yamasaki M, Momoshima S, Ishii H, Ando K, Tanioka Y, Tamaoki N, Nomura T, Toyama Y, Okano H.
    J Neurosci Res; 2005 Apr 15; 80(2):182-90. PubMed ID: 15772979
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Implantation of BM mesenchymal stem cells into injured spinal cord elicits de novo neurogenesis and functional recovery: evidence from a study in rhesus monkeys.
    Deng YB, Liu XG, Liu ZG, Liu XL, Liu Y, Zhou GQ.
    Cytotherapy; 2006 Apr 15; 8(3):210-4. PubMed ID: 16793730
    [Abstract] [Full Text] [Related]

  • 28. Transplantation of D15A-expressing glial-restricted-precursor-derived astrocytes improves anatomical and locomotor recovery after spinal cord injury.
    Fan C, Zheng Y, Cheng X, Qi X, Bu P, Luo X, Kim DH, Cao Q.
    Int J Biol Sci; 2013 Apr 15; 9(1):78-93. PubMed ID: 23289019
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Neural regeneration therapy after spinal cord injury induces unique brain functional reorganizations in rhesus monkeys.
    Rao JS, Zhao C, Wei RH, Feng T, Bao SS, Zhao W, Tian Z, Liu Z, Yang ZY, Li XG.
    Ann Med; 2022 Dec 15; 54(1):1867-1883. PubMed ID: 35792748
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Respiratory axon regeneration in the chronically injured spinal cord.
    Cheng L, Sami A, Ghosh B, Goudsward HJ, Smith GM, Wright MC, Li S, Lepore AC.
    Neurobiol Dis; 2021 Jul 15; 155():105389. PubMed ID: 33975016
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. A neonatal mouse spinal cord injury model for assessing post-injury adaptive plasticity and human stem cell integration.
    Boulland JL, Lambert FM, Züchner M, Ström S, Glover JC.
    PLoS One; 2013 Jul 15; 8(8):e71701. PubMed ID: 23990976
    [Abstract] [Full Text] [Related]

  • 38. Human induced pluripotent stem cells integrate, create synapses and extend long axons after spinal cord injury.
    Lavoie NS, Truong V, Malone D, Pengo T, Patil N, Dutton JR, Parr AM.
    J Cell Mol Med; 2022 Apr 15; 26(7):1932-1942. PubMed ID: 35257489
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.