These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


222 related items for PubMed ID: 36675109

  • 1. Comparative Evaluation of Reproducibility of Phage-Displayed Peptide Selections and NGS Data, through High-Fidelity Mapping of Massive Peptide Repertoires.
    Petry KG, Pilalis E, Chatziioannou A.
    Int J Mol Sci; 2023 Jan 13; 24(2):. PubMed ID: 36675109
    [Abstract] [Full Text] [Related]

  • 2. TSAT: Efficient evaluation software for NGS data of phage/mirror-image phage display selections.
    Altendorf T, Mohrlüder J, Willbold D.
    Biophys Rep (N Y); 2024 Sep 11; 4(3):100166. PubMed ID: 38909902
    [Abstract] [Full Text] [Related]

  • 3. Application of Next Generation Sequencing (NGS) in Phage Displayed Peptide Selection to Support the Identification of Arsenic-Binding Motifs.
    Braun R, Schönberger N, Vinke S, Lederer F, Kalinowski J, Pollmann K.
    Viruses; 2020 Nov 27; 12(12):. PubMed ID: 33261041
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Next-Generation DNA Sequencing of VH/VL Repertoires: A Primer and Guide to Applications in Single-Domain Antibody Discovery.
    Henry KA.
    Methods Mol Biol; 2018 Nov 27; 1701():425-446. PubMed ID: 29116520
    [Abstract] [Full Text] [Related]

  • 6. Ligand Selection for Affinity Chromatography Using Phage Display.
    Bozovičar K, Molek P, Bizjan BJ, Bratkovič T.
    Methods Mol Biol; 2022 Nov 27; 2466():159-185. PubMed ID: 35585318
    [Abstract] [Full Text] [Related]

  • 7. Propagation Capacity of Phage Display Peptide Libraries Is Affected by the Length and Conformation of Displayed Peptide.
    Kamstrup Sell D, Sinkjaer AW, Bakhshinejad B, Kjaer A.
    Molecules; 2023 Jul 10; 28(14):. PubMed ID: 37513190
    [Abstract] [Full Text] [Related]

  • 8. Next-generation sequencing enables the discovery of more diverse positive clones from a phage-displayed antibody library.
    Yang W, Yoon A, Lee S, Kim S, Han J, Chung J.
    Exp Mol Med; 2017 Mar 24; 49(3):e308. PubMed ID: 28336957
    [Abstract] [Full Text] [Related]

  • 9. Next-generation phage display: integrating and comparing available molecular tools to enable cost-effective high-throughput analysis.
    Dias-Neto E, Nunes DN, Giordano RJ, Sun J, Botz GH, Yang K, Setubal JC, Pasqualini R, Arap W.
    PLoS One; 2009 Dec 17; 4(12):e8338. PubMed ID: 20020040
    [Abstract] [Full Text] [Related]

  • 10. Large-Scale Interaction Profiling of Protein Domains Through Proteomic Peptide-Phage Display Using Custom Peptidomes.
    Seo MH, Nim S, Jeon J, Kim PM.
    Methods Mol Biol; 2017 Dec 17; 1518():213-226. PubMed ID: 27873209
    [Abstract] [Full Text] [Related]

  • 11. Next-Generation Sequencing of Antibody Display Repertoires.
    Rouet R, Jackson KJL, Langley DB, Christ D.
    Front Immunol; 2018 Dec 17; 9():118. PubMed ID: 29472918
    [Abstract] [Full Text] [Related]

  • 12. A Computational Pipeline for the Extraction of Actionable Biological Information From NGS-Phage Display Experiments.
    Vekris A, Pilalis E, Chatziioannou A, Petry KG.
    Front Physiol; 2019 Dec 17; 10():1160. PubMed ID: 31607941
    [Abstract] [Full Text] [Related]

  • 13. Model systems to study the parameters determining the success of phage antibody selections on complex antigens.
    Mutuberria R, Hoogenboom HR, van der Linden E, de Bruïne AP, Roovers RC.
    J Immunol Methods; 1999 Dec 10; 231(1-2):65-81. PubMed ID: 10648928
    [Abstract] [Full Text] [Related]

  • 14. Analysis of Compositional Bias in a Commercial Phage Display Peptide Library by Next-Generation Sequencing.
    Sloth AB, Bakhshinejad B, Jensen M, Stavnsbjerg C, Liisberg MB, Rossing M, Kjaer A.
    Viruses; 2022 Oct 29; 14(11):. PubMed ID: 36366500
    [Abstract] [Full Text] [Related]

  • 15. Deep sequencing of phage display libraries to support antibody discovery.
    Ravn U, Didelot G, Venet S, Ng KT, Gueneau F, Rousseau F, Calloud S, Kosco-Vilbois M, Fischer N.
    Methods; 2013 Mar 15; 60(1):99-110. PubMed ID: 23500657
    [Abstract] [Full Text] [Related]

  • 16. Phage Selection of Cyclic Peptides for Application in Research and Drug Development.
    Deyle K, Kong XD, Heinis C.
    Acc Chem Res; 2017 Aug 15; 50(8):1866-1874. PubMed ID: 28719188
    [Abstract] [Full Text] [Related]

  • 17. Characterization of In Vivo Selected Bacteriophage for the Development of Novel Tumor-Targeting Agents with Specific Pharmacokinetics and Imaging Applications.
    Newton-Northup J, Deutscher SL.
    Methods Mol Biol; 2017 Aug 15; 1572():445-465. PubMed ID: 28299705
    [Abstract] [Full Text] [Related]

  • 18. Next-Generation Phage Display to Identify Peptide Ligands of Deubiquitinases.
    Spiliotopoulos A, Maurer SK, Tsoumpeli MT, Bonfante JAF, Owen JP, Gough KC, Dreveny I.
    Methods Mol Biol; 2023 Aug 15; 2591():189-218. PubMed ID: 36350550
    [Abstract] [Full Text] [Related]

  • 19. Monitoring Phage Biopanning by Next-Generation Sequencing.
    Vaisman-Mentesh A, Wine Y.
    Methods Mol Biol; 2018 Aug 15; 1701():463-473. PubMed ID: 29116522
    [Abstract] [Full Text] [Related]

  • 20. DNA Subtraction of In Vivo Selected Phage Repertoires for Efficient Peptide Pathology Biomarker Identification in Neuroinflammation Multiple Sclerosis Model.
    Vargas-Sanchez K, Vekris A, Petry KG.
    Biomark Insights; 2016 Aug 15; 11():19-29. PubMed ID: 26917946
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.