These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Tuning nanostructured surfaces with hybrid wettability areas to enhance condensation. Gao S, Liu W, Liu Z. Nanoscale; 2019 Jan 03; 11(2):459-466. PubMed ID: 30325374 [Abstract] [Full Text] [Related]
4. Vapor Condensation on Bioinspired Hierarchical Nanostructured Surfaces with Hybrid Wettabilities. Dai X, Wang M, Zhang J, Xin G, Wang X. Langmuir; 2022 Sep 13; 38(36):11099-11108. PubMed ID: 36037002 [Abstract] [Full Text] [Related]
5. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation. Mondal B, Mac Giolla Eain M, Xu Q, Egan VM, Punch J, Lyons AM. ACS Appl Mater Interfaces; 2015 Oct 28; 7(42):23575-88. PubMed ID: 26372672 [Abstract] [Full Text] [Related]
6. Dropwise condensation: From fundamentals of wetting, nucleation, and droplet mobility to performance improvement by advanced functional surfaces. Zheng SF, Gross U, Wang XD. Adv Colloid Interface Sci; 2021 Sep 28; 295():102503. PubMed ID: 34411880 [Abstract] [Full Text] [Related]
7. Dropwise Condensation on a Hierarchical Nanopillar Structured Surface. Baba S, Sawada K, Tanaka K, Okamoto A. Langmuir; 2020 Sep 01; 36(34):10033-10042. PubMed ID: 32787030 [Abstract] [Full Text] [Related]
8. Molecular Dynamics Simulation of the Influence of Nanoscale Structure on Water Wetting and Condensation. Hiratsuka M, Emoto M, Konno A, Ito S. Micromachines (Basel); 2019 Aug 31; 10(9):. PubMed ID: 31480496 [Abstract] [Full Text] [Related]
9. On the onset of surface condensation: formation and transition mechanisms of condensation mode. Sheng Q, Sun J, Wang Q, Wang W, Wang HS. Sci Rep; 2016 Aug 02; 6():30764. PubMed ID: 27481071 [Abstract] [Full Text] [Related]
10. Preferred Mode of Atmospheric Water Vapor Condensation on Nanoengineered Surfaces: Dropwise or Filmwise? Thomas TM, Sinha Mahapatra P, Ganguly R, Tiwari MK. Langmuir; 2023 Apr 18; 39(15):5396-5407. PubMed ID: 37014297 [Abstract] [Full Text] [Related]
11. Banana Leaf Surface's Janus Wettability Transition from the Wenzel State to Cassie-Baxter State and the Underlying Mechanism. Jiang Y, Yang Z, Jiang T, Shen D, Duan J. Materials (Basel); 2022 Jan 25; 15(3):. PubMed ID: 35160863 [Abstract] [Full Text] [Related]
12. Recurrent filmwise and dropwise condensation on a beetle mimetic surface. Hou Y, Yu M, Chen X, Wang Z, Yao S. ACS Nano; 2015 Jan 27; 9(1):71-81. PubMed ID: 25482594 [Abstract] [Full Text] [Related]
13. Dynamic Wettability on the Lubricant-Impregnated Surface: From Nucleation to Growth and Coalescence. Guo L, Tang GH, Kumar S. ACS Appl Mater Interfaces; 2020 Jun 10; 12(23):26555-26565. PubMed ID: 32419445 [Abstract] [Full Text] [Related]
14. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. Miljkovic N, Enright R, Wang EN. ACS Nano; 2012 Feb 28; 6(2):1776-85. PubMed ID: 22293016 [Abstract] [Full Text] [Related]
15. Ice nucleation on nanotextured surfaces: the influence of surface fraction, pillar height and wetting states. Metya AK, Singh JK, Müller-Plathe F. Phys Chem Chem Phys; 2016 Sep 29; 18(38):26796-26806. PubMed ID: 27711467 [Abstract] [Full Text] [Related]
16. Time-Dependent Wetting Behavior of PDMS Surfaces with Bioinspired, Hierarchical Structures. Mishra H, Schrader AM, Lee DW, Gallo A, Chen SY, Kaufman Y, Das S, Israelachvili JN. ACS Appl Mater Interfaces; 2016 Mar 29; 8(12):8168-74. PubMed ID: 26709928 [Abstract] [Full Text] [Related]
17. 3D-Printed Bioinspired Cassie-Baxter Wettability for Controllable Microdroplet Manipulation. Yin Q, Guo Q, Wang Z, Chen Y, Duan H, Cheng P. ACS Appl Mater Interfaces; 2021 Jan 13; 13(1):1979-1987. PubMed ID: 33351582 [Abstract] [Full Text] [Related]
18. Flow Condensation Heat Transfer Characteristics of Nanochannels with Nanopillars: A Molecular Dynamics Study. Wang M, Sun H, Cheng L. Langmuir; 2021 Dec 21; 37(50):14744-14752. PubMed ID: 34813700 [Abstract] [Full Text] [Related]
19. Few-layer graphene on nickel enabled sustainable dropwise condensation. Chang W, Peng B, Egab K, Zhang Y, Cheng Y, Li X, Ma X, Li C. Sci Bull (Beijing); 2021 Sep 30; 66(18):1877-1884. PubMed ID: 36654397 [Abstract] [Full Text] [Related]
20. Nanoarray-Embedded Hierarchical Surfaces for Highly Durable Dropwise Condensation. Hu Y, Jiang K, Liew KM, Zhang LW. Research (Wash D C); 2022 Sep 30; 2022():9789657. PubMed ID: 36061819 [Abstract] [Full Text] [Related] Page: [Next] [New Search]