These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


127 related items for PubMed ID: 36681026

  • 1. Implication of solvent polarities on browntop millet (Urochloa ramosa) phenolic antioxidants and their ability to protect oxidative DNA damage and inhibit α-amylase and α-glucosidase enzymes.
    Sunagar RR, Sreerama YN.
    Food Chem; 2023 Jun 15; 411():135474. PubMed ID: 36681026
    [Abstract] [Full Text] [Related]

  • 2. Phenolic antioxidants of foxtail and little millet cultivars and their inhibitory effects on α-amylase and α-glucosidase activities.
    Pradeep PM, Sreerama YN.
    Food Chem; 2018 May 01; 247():46-55. PubMed ID: 29277227
    [Abstract] [Full Text] [Related]

  • 3. Impact of processing on the phenolic profiles of small millets: evaluation of their antioxidant and enzyme inhibitory properties associated with hyperglycemia.
    Pradeep PM, Sreerama YN.
    Food Chem; 2015 Feb 15; 169():455-63. PubMed ID: 25236251
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Phenolic-rich extracts from selected tropical underutilized legumes inhibit α-amylase, α-glucosidase, and angiotensin I converting enzyme in vitro.
    Ademiluyi AO, Oboh G.
    J Basic Clin Physiol Pharmacol; 2012 Jan 19; 23(1):17-25. PubMed ID: 22865445
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Soybean phenolic-rich extracts inhibit key-enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro.
    Ademiluyi AO, Oboh G.
    Exp Toxicol Pathol; 2013 Mar 19; 65(3):305-9. PubMed ID: 22005499
    [Abstract] [Full Text] [Related]

  • 8. Inhibitory potential of phenolic compounds of Thai colored rice (Oryza sativa L.) against α-glucosidase and α-amylase through in vitro and in silico studies.
    Sansenya S, Payaka A.
    J Sci Food Agric; 2022 Nov 19; 102(14):6718-6726. PubMed ID: 35620810
    [Abstract] [Full Text] [Related]

  • 9. In Vitro Bioactivities of Extracts from Tomato Pomace.
    Jamaleddine A, Caro P, Bouajila J, Evon P, Haddad JG, El-Kalamouni C, Hijazi A, Merah O.
    Front Biosci (Landmark Ed); 2022 Sep 13; 27(9):259. PubMed ID: 36224017
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Selectivity Tuning by Natural Deep Eutectic Solvents (NADESs) for Extraction of Bioactive Compounds from Cytinus hypocistis-Studies of Antioxidative, Enzyme-Inhibitive Properties and LC-MS Profiles.
    Zengin G, Cádiz-Gurrea ML, Fernández-Ochoa Á, Leyva-Jiménez FJ, Carretero AS, Momotko M, Yildiztugay E, Karatas R, Jugreet S, Mahomoodally MF, Boczkaj G.
    Molecules; 2022 Sep 07; 27(18):. PubMed ID: 36144535
    [Abstract] [Full Text] [Related]

  • 12. Optimization of Two Eco-Friendly Extractions of Black Medick (Medicago lupulina L.) Phenols and Their Antioxidant, Cosmeceutical, α-Glucosidase and α-Amylase Inhibitory Properties.
    Jakupović L, Kalvarešin M, Bukovina K, Poljak V, Vujić L, Zovko Končić M.
    Molecules; 2021 Mar 14; 26(6):. PubMed ID: 33799441
    [Abstract] [Full Text] [Related]

  • 13. Relationship Between Metabolites Composition and Biological Activities of Phyllanthus niruri Extracts Prepared by Different Drying Methods and Solvents Extraction.
    Mediani A, Abas F, Khatib A, Tan CP, Ismail IS, Shaari K, Ismail A, Lajis NH.
    Plant Foods Hum Nutr; 2015 Jun 14; 70(2):184-92. PubMed ID: 25800644
    [Abstract] [Full Text] [Related]

  • 14. Reutilization of mango byproducts: study of the effect of extraction solvent and temperature on their antioxidant properties.
    Dorta E, Lobo MG, Gonzalez M.
    J Food Sci; 2012 Jan 14; 77(1):C80-8. PubMed ID: 22132766
    [Abstract] [Full Text] [Related]

  • 15. In vitro inhibition activity of polyphenol-rich extracts from Syzygium aromaticum (L.) Merr. & Perry (Clove) buds against carbohydrate hydrolyzing enzymes linked to type 2 diabetes and Fe(2+)-induced lipid peroxidation in rat pancreas.
    Adefegha SA, Oboh G.
    Asian Pac J Trop Biomed; 2012 Oct 14; 2(10):774-81. PubMed ID: 23569846
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Inhibitory Effects of Siegesbeckia orientalis Extracts on Advanced Glycation End Product Formation and Key Enzymes Related to Metabolic Syndrome.
    Hung WC, Ling XH, Chang CC, Hsu HF, Wang SW, Lee YC, Luo C, Lee YT, Houng JY.
    Molecules; 2017 Oct 21; 22(10):. PubMed ID: 29065451
    [Abstract] [Full Text] [Related]

  • 19. Unravelling the phenolic compound reserves, antioxidant and enzyme inhibitory activities of an endemic plant species, Achillea pseudoaleppica.
    Yılmaz MA, Taslimi P, Kılıç Ö, Gülçin İ, Dey A, Bursal E.
    J Biomol Struct Dyn; 2023 Feb 21; 41(2):445-456. PubMed ID: 34822320
    [Abstract] [Full Text] [Related]

  • 20. Distribution of phenolic antioxidants in whole and milled fractions of quinoa and their inhibitory effects on α-amylase and α-glucosidase activities.
    Hemalatha P, Bomzan DP, Sathyendra Rao BV, Sreerama YN.
    Food Chem; 2016 May 15; 199():330-8. PubMed ID: 26775979
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.