These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


147 related items for PubMed ID: 36683216

  • 1. Thermally and Magnetically Programmable Hydrogel Microactuators.
    Saadli M, Braunmiller DL, Mourran A, Crassous JJ.
    Small; 2023 Apr; 19(16):e2207035. PubMed ID: 36683216
    [Abstract] [Full Text] [Related]

  • 2. Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions.
    Jiao D, Zhu QL, Li CY, Zheng Q, Wu ZL.
    Acc Chem Res; 2022 Jun 07; 55(11):1533-1545. PubMed ID: 35413187
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Reversible Shape-Shifting of an Ionic Strength Responsive Hydrogel Enabled by Programmable Network Anisotropy.
    Wen X, Zhang Y, Chen D, Zhao Q.
    ACS Appl Mater Interfaces; 2022 Sep 07; 14(35):40344-40350. PubMed ID: 36017981
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Smart Actuators and Adhesives for Reconfigurable Matter.
    Ko H, Javey A.
    Acc Chem Res; 2017 Apr 18; 50(4):691-702. PubMed ID: 28263544
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Nanocomposite Hydrogel Actuators with Ordered Structures: From Nanoscale Control to Macroscale Deformations.
    Yao X, Chen H, Qin H, Cong HP.
    Small Methods; 2024 Apr 18; 8(4):e2300414. PubMed ID: 37365950
    [Abstract] [Full Text] [Related]

  • 10. An Anisotropic Hydrogel by Programmable Ionic Crosslinking for Sequential Two-Stage Actuation under Single Stimulus.
    Zhang Y, Cao X, Zhao Y, Li H, Xiao S, Chen Z, Huang G, Sun Y, Liu Z, He Z.
    Gels; 2023 Mar 29; 9(4):. PubMed ID: 37102891
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Dual Salt- and Thermoresponsive Programmable Bilayer Hydrogel Actuators with Pseudo-Interpenetrating Double-Network Structures.
    Xiao S, Zhang M, He X, Huang L, Zhang Y, Ren B, Zhong M, Chang Y, Yang J, Zheng J.
    ACS Appl Mater Interfaces; 2018 Jun 27; 10(25):21642-21653. PubMed ID: 29878750
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Dual-Stimuli Cooperative Responsive Hydrogel Microactuators Via Two-Photon Lithography.
    Wang JY, Jin F, Dong XZ, Liu J, Zhou MX, Li T, Zheng ML.
    Small; 2023 Oct 27; 19(40):e2303166. PubMed ID: 37264716
    [Abstract] [Full Text] [Related]

  • 16. Designing Multistimuli-Responsive Anisotropic Bilayer Hydrogel Actuators by Integrating LCST Phase Transition and Photochromic Isomerization.
    Long S, Huang J, Xiong J, Liu C, Chen F, Shen J, Huang Y, Li X.
    Polymers (Basel); 2023 Feb 03; 15(3):. PubMed ID: 36772087
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Programmable and Bidirectional Bending of Soft Actuators Based on Janus Structure with Sticky Tough PAA-Clay Hydrogel.
    Zhao L, Huang J, Zhang Y, Wang T, Sun W, Tong Z.
    ACS Appl Mater Interfaces; 2017 Apr 05; 9(13):11866-11873. PubMed ID: 28290198
    [Abstract] [Full Text] [Related]

  • 19. Bioinspired Soft Microactuators.
    Zhu P, Chen R, Zhou C, Aizenberg M, Aizenberg J, Wang L.
    Adv Mater; 2021 May 05; 33(21):e2008558. PubMed ID: 33860582
    [Abstract] [Full Text] [Related]

  • 20. PEG-Induced Controllable Thin-Thickness Gradient and Water Retention: A Simple Way to Programme Deformation of Hydrogel Actuators.
    Yang Y, Wang T, Tian F, Wang X, Hu Y, Xia X, Xu S.
    Macromol Rapid Commun; 2021 Jul 05; 42(14):e2000749. PubMed ID: 34128581
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.