These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
188 related items for PubMed ID: 3669773
21. Production of colony-stimulating factor(s) for granulocyte-macrophage and multipotential (granulocyte/erythroid/megakaryocyte/macrophage) hematopoietic progenitor cells (CFU-GEMM) by clonal lines of human IL-2-dependent T-lymphocytes. Greenberger JS, Krensky AM, Messner H, Burakoff SJ, Wandl U, Sakakeeny MA. Exp Hematol; 1984 Oct; 12(9):720-7. PubMed ID: 6333354 [Abstract] [Full Text] [Related]
22. In vivo regulation of hemopoiesis by transforming growth factor beta 1: stimulation of GM-CSF- and M-CSF-dependent murine bone marrow precursors. Bursuker I, Neddermann KM, Petty BA, Schacter B, Spitalny GL, Tepper MA, Pasternak RD. Exp Hematol; 1992 May; 20(4):431-5. PubMed ID: 1568460 [Abstract] [Full Text] [Related]
23. Role of the stromal cells in the regulation of granulopoiesis in long-term bone marrow culture: effects of conditioning medium on granulopoiesis "in vitro". Miyanomae T, Tsurusawa M, Fujita J, Mori KJ. Biomed Pharmacother; 1982 Jan; 36(1):14-8. PubMed ID: 6982075 [Abstract] [Full Text] [Related]
25. Experimental analysis of cell interactions during hemopoiesis. Michurina TV, Khrushchov NG. Int J Dev Biol; 1997 Dec; 41(6):817-33. PubMed ID: 9449458 [Abstract] [Full Text] [Related]
26. The influence of fibroblast-like cells derived from canine fetal hematopoietic tissues on the regulation of lymphohematopoiesis. Klein AK, Lynch JA, Dyck JA, Shimizu JA, Fox LA, Stitzel KA. Int J Cell Cloning; 1984 Jan; 2(1):20-33. PubMed ID: 6707490 [Abstract] [Full Text] [Related]
27. Granulocyte factors as potential regulators of hemopoiesis. I. Localisation of hemopoietic activity within granulocytes. Sułowska Z, Tchórzewski H. Folia Haematol Int Mag Klin Morphol Blutforsch; 1987 Jan; 114(2):188-95. PubMed ID: 2440774 [Abstract] [Full Text] [Related]
28. The nature and function of granulopoietic microenvironments. Ploemacher RE, Piersma AH, Brockbank KG. Blood Cells; 1984 Jan; 10(2-3):341-67. PubMed ID: 6543655 [Abstract] [Full Text] [Related]
29. Stromal cells in myeloid and lymphoid long-term bone marrow cultures can support multiple hemopoietic lineages and modulate their production of hemopoietic growth factors. Johnson A, Dorshkind K. Blood; 1986 Dec; 68(6):1348-54. PubMed ID: 3490887 [Abstract] [Full Text] [Related]
30. Enhanced myelopoiesis in long-term cultures of human bone marrow pretreated with recombinant granulocyte-macrophage colony-stimulating factor. Haas R, Ogniben E, Kiesel S, Hohaus S, Baumann M, Körbling M, Dörken B, Hunstein W. Exp Hematol; 1989 Mar; 17(3):235-9. PubMed ID: 2645156 [Abstract] [Full Text] [Related]
31. Stromal cells in long-term cultures of liver, spleen, and bone marrow at different developmental ages have different capacities to maintain GM-CFC proliferation. Van Den Heuvel R, Schoeters G, Leppens H, Vanderborght O. Exp Hematol; 1991 Feb; 19(2):115-21. PubMed ID: 1991493 [Abstract] [Full Text] [Related]
32. Reduced oxygen tension increases hematopoiesis in long-term culture of human stem and progenitor cells from cord blood and bone marrow. Koller MR, Bender JG, Miller WM, Papoutsakis ET. Exp Hematol; 1992 Feb; 20(2):264-70. PubMed ID: 1544397 [Abstract] [Full Text] [Related]
33. Functional characterization of mouse granulocytes and macrophages produced in vitro from bone marrow progenitors stimulated with interleukin 3 (IL-3) or granulocyte-macrophage colony-stimulating factor (GM-CSF). Bender JG, Unverzagt KL, Maples PB, Mehrotra Y, Mellon J, Van Epps DE, Stewart CC. Exp Hematol; 1992 Oct; 20(9):1135-40. PubMed ID: 1361455 [Abstract] [Full Text] [Related]
34. Stromal cells from murine developing hemopoietic organs: comparison of colony-forming unit of fibroblasts and long-term cultures. Van den Heuvel R, Mathieu E, Schoeters G, Leppens H, Vanderborght O. Int J Dev Biol; 1991 Mar; 35(1):33-41. PubMed ID: 1714292 [Abstract] [Full Text] [Related]
35. Establishment of a hepatocytic epithelial cell line from the murine fetal liver capable of promoting hemopoietic cell proliferation. Hata M, Nanno M, Doi H, Satomi S, Sakata T, Suzuki R, Itoh T. J Cell Physiol; 1993 Feb; 154(2):381-92. PubMed ID: 8425919 [Abstract] [Full Text] [Related]
36. Prolonged hemopoiesis of murine bone marrow derived epithelioid cells in vitro. Song ZX, Qi SL, Ma YX, Li WP, Liu JH, Fu J. Proc Chin Acad Med Sci Peking Union Med Coll; 1989 Feb; 4(1):8-12. PubMed ID: 2710795 [Abstract] [Full Text] [Related]
37. Cloned stromal cell lines derived from human Whitlock/Witte-type long-term bone marrow cultures. Novotny JR, Duehrsen U, Welch K, Layton JE, Cebon JS, Boyd AW. Exp Hematol; 1990 Aug; 18(7):775-84. PubMed ID: 1696206 [Abstract] [Full Text] [Related]
38. Characterization of fibroblastic stromal cells from murine bone marrow. Piersma AH, Brockbank KG, Ploemacher RE, van Vliet E, Brakel-van Peer KM, Visser PJ. Exp Hematol; 1985 May; 13(4):237-43. PubMed ID: 2580729 [Abstract] [Full Text] [Related]
39. Hemin stimulation of hemopoiesis in murine long-term bone marrow culture. Chertkov JL, Jiang S, Lutton JD, Levere RD, Abraham NG. Exp Hematol; 1991 Oct; 19(9):905-9. PubMed ID: 1832644 [Abstract] [Full Text] [Related]
40. Effects of interleukin 4 on stromal cell-associated bone marrow culture. Ogo T, Otsuka T, Satoh H, Chifu Y, Nakano T, Niho Y. Exp Hematol; 1991 Oct; 19(9):899-904. PubMed ID: 1893967 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]