These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
161 related items for PubMed ID: 36708887
1. Toward ultra-tough and heat-resistant biodegradable polylactide/core-shell rubber blends by regulating the distribution of rubber particles with stereocomplex crystallites. Liu H, Zhao Y, Zheng Y, Chen J, Wang J, Gao G, Bai D. Int J Biol Macromol; 2023 Mar 31; 232():123422. PubMed ID: 36708887 [Abstract] [Full Text] [Related]
2. Tailor-Made Dispersion and Distribution of Stereocomplex Crystallites in Poly(l-lactide)/Elastomer Blends toward Largely Enhanced Crystallization Rate and Impact Toughness. Luo Y, Ju Y, Bai H, Liu Z, Zhang Q, Fu Q. J Phys Chem B; 2017 Jun 29; 121(25):6271-6279. PubMed ID: 28587466 [Abstract] [Full Text] [Related]
3. Crystallization and Alkaline Degradation Behaviors of Poly(l-Lactide)/4-Armed Poly(ε-Caprolactone)-Block-Poly(d-Lactide) Blends with Different Poly(d-Lactide) Block Lengths. Dai S, Wang M, Zhuang Z, Ning Z. Polymers (Basel); 2020 Sep 25; 12(10):. PubMed ID: 32992889 [Abstract] [Full Text] [Related]
4. Controlling stereocomplex crystal morphology in poly(lactide) through chain alignment. Tuccitto AV, Anstey A, Sansone ND, Park CB, Lee PC. Int J Biol Macromol; 2022 Oct 01; 218():22-32. PubMed ID: 35850270 [Abstract] [Full Text] [Related]
6. Stereocomplex formation between enantiomeric poly(lactic acid)s. 12. spherulite growth of low-molecular-weight poly(lactic acid)s from the melt. Tsuji H, Tezuka Y. Biomacromolecules; 2004 Mar 31; 5(4):1181-6. PubMed ID: 15244428 [Abstract] [Full Text] [Related]
7. Competitive Stereocomplexation and Homocrystallization Behaviors in the Poly(lactide) Blends of PLLA and PDLA-PEG-PDLA with Controlled Block Length. Jing Z, Shi X, Zhang G. Polymers (Basel); 2017 Mar 15; 9(3):. PubMed ID: 30970786 [Abstract] [Full Text] [Related]
8. Preferential formation of stereocomplex crystals in poly(L-lactic acid)/poly(D-lactic acid) blends by a fullerene nucleator. Chang WW, Niu J, Peng H, Rong W. Int J Biol Macromol; 2023 Dec 31; 253(Pt 5):127230. PubMed ID: 37797850 [Abstract] [Full Text] [Related]
9. Experimental evidence for immiscibility of enantiomeric polymers: Phase separation of high-molecular-weight poly(ʟ-lactide)/poly(ᴅ-lactide) blends and its impact on hindering stereocomplex crystallization. Chen Y, Lan Q. Int J Biol Macromol; 2024 Mar 31; 260(Pt 1):129459. PubMed ID: 38232890 [Abstract] [Full Text] [Related]
10. Entirely environment-friendly polylactide composites with outstanding heat resistance and superior mechanical performance fabricated by spunbond technology: Exploring the role of nanofibrillated stereocomplex polylactide crystals. Jalali A, Romero-Diez S, Nofar M, Park CB. Int J Biol Macromol; 2021 Dec 15; 193(Pt B):2210-2220. PubMed ID: 34798187 [Abstract] [Full Text] [Related]
11. Toward Super-Tough Poly(l-lactide) via Constructing Pseudo-Cross-link Network in Toughening Phase Anchored by Stereocomplex Crystallites at the Interface. Yang DD, Liu W, Zhu HM, Wu G, Chen SC, Wang XL, Wang YZ. ACS Appl Mater Interfaces; 2018 Aug 08; 10(31):26594-26603. PubMed ID: 30019579 [Abstract] [Full Text] [Related]
12. Introduction of stereocomplex crystallites of PLA for the solid and microcellular poly(lactide)/poly(butylene adipate-co-terephthalate) blends. Shi X, Qin J, Wang L, Ren L, Rong F, Li D, Wang R, Zhang G. RSC Adv; 2018 Mar 26; 8(22):11850-11861. PubMed ID: 35539374 [Abstract] [Full Text] [Related]
13. Remarkably enhanced stereocomplex crystallization of high-molar-mass enantiomeric polylactide blends by adding double-grafted copolymers. Yuan L, Deng S, Wang Y, Xiu H, Zhang Q, Bai H. Int J Biol Macromol; 2024 Feb 26; 258(Pt 1):128919. PubMed ID: 38134994 [Abstract] [Full Text] [Related]
14. Morphological, thermal, rheological and mechanical properties of poly (butylene carbonate) reinforced by stereocomplex polylactide. Li Y, Han C, Yu Y, Huang D. Int J Biol Macromol; 2019 Sep 15; 137():1169-1178. PubMed ID: 31301391 [Abstract] [Full Text] [Related]
15. Homo- and Stereocomplex Crystallization of Star-Shaped Four-Armed Stereo Diblock Copolymers of Crystalline and Amorphous Poly(lactide)s: Effects of Incorporation and Position of Amorphous Blocks. Tsuji H, Ogawa M, Arakawa Y. J Phys Chem B; 2016 Oct 27; 120(42):11052-11063. PubMed ID: 27700096 [Abstract] [Full Text] [Related]
16. Bio-based poly(lactic acid) foams with enhanced mechanical and heat-resistant properties obtained by facilitating stereocomplex crystallization with addition of D-sorbitol. Wang Y, Zou F, Lin M, Xing S, Peng Q, Li G, Liao X. Int J Biol Macromol; 2024 Apr 27; 265(Pt 1):130902. PubMed ID: 38492697 [Abstract] [Full Text] [Related]
17. Promoted formation of stereocomplex in enantiomeric poly(lactic acid)s induced by cellulose nanofibers. Ren Q, Wu M, Weng Z, Zhu X, Li W, Huang P, Wang L, Zheng W, Ohshima M. Carbohydr Polym; 2022 Jan 15; 276():118800. PubMed ID: 34823806 [Abstract] [Full Text] [Related]
19. Crystallization, rheology and mechanical properties of the blends of poly(l-lactide) with supramolecular polymers based on poly(d-lactide)-poly(ε-caprolactone-co-δ-valerolactone)-poly(d-lactide) triblock copolymers. Jing Z, Li J, Xiao W, Xu H, Hong P, Li Y. RSC Adv; 2019 Aug 19; 9(45):26067-26079. PubMed ID: 35531016 [Abstract] [Full Text] [Related]
20. Molecular weight dependence of the poly(L-lactide)/poly(D-lactide) Stereocomplex at the air-water interface. Duan Y, Liu J, Sato H, Zhang J, Tsuji H, Ozaki Y, Yan S. Biomacromolecules; 2006 Oct 19; 7(10):2728-35. PubMed ID: 17025346 [Abstract] [Full Text] [Related] Page: [Next] [New Search]