These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Dissimilation of tryptophan and related indolic compounds by ruminal microorganisms in vitro. Yokoyama MT, Carlson JR. Appl Microbiol; 1974 Mar; 27(3):540-8. PubMed ID: 4545142 [Abstract] [Full Text] [Related]
4. Isolation and characteristics of a skatole-producing Lactobacillus sp. from the bovine rumen. Yokoyama MT, Carlson JR, Holdeman LV. Appl Environ Microbiol; 1977 Dec; 34(6):837-42. PubMed ID: 563703 [Abstract] [Full Text] [Related]
5. Effects of fructooligosaccharide on conversion of L-tryptophan to skatole and indole by mixed populations of pig fecal bacteria. Xu ZR, Hu CH, Wang MQ. J Gen Appl Microbiol; 2002 Apr; 48(2):83-90. PubMed ID: 12469304 [Abstract] [Full Text] [Related]
6. The formation of nitrosamines by human intestinal bacteria. Hawksworth G, Hill MJ. Biochem J; 1971 Mar; 122(1):28P-29P. PubMed ID: 4942015 [No Abstract] [Full Text] [Related]
7. Microbiological transformation of bile acids. Hayakawa S. Adv Lipid Res; 1973 Mar; 11():143-92. PubMed ID: 4581568 [No Abstract] [Full Text] [Related]
10. Catabolic pathway for the production of skatole and indoleacetic acid by the acetogen Clostridium drakei, Clostridium scatologenes, and swine manure. Whitehead TR, Price NP, Drake HL, Cotta MA. Appl Environ Microbiol; 2008 Mar; 74(6):1950-3. PubMed ID: 18223109 [Abstract] [Full Text] [Related]
11. Degradation of tryptophan and related indolic compounds by ruminal bacteria, protozoa and their mixture in vitro. Mohammed N, Onodera R, Or-Rashid MM. Amino Acids; 2003 Mar; 24(1-2):73-80. PubMed ID: 12624737 [Abstract] [Full Text] [Related]