These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
166 related items for PubMed ID: 36740688
1. Synergistic effect on cardiac energetics by targeting the creatine kinase system: in vivo application of high-resolution 31P-CMRS in the mouse. Maguire ML, McAndrew DJ, Lake HA, Ostrowski PJ, Zervou S, Neubauer S, Lygate CA, Schneider JE. J Cardiovasc Magn Reson; 2023 Feb 06; 25(1):6. PubMed ID: 36740688 [Abstract] [Full Text] [Related]
2. Neural-network classification of cardiac disease from 31P cardiovascular magnetic resonance spectroscopy measures of creatine kinase energy metabolism. Solaiyappan M, Weiss RG, Bottomley PA. J Cardiovasc Magn Reson; 2019 Aug 12; 21(1):49. PubMed ID: 31401975 [Abstract] [Full Text] [Related]
3. Creatine kinase rate constant in the human heart at 7T with 1D-ISIS/2D CSI localization. Bashir A, Zhang J, Denney TS. PLoS One; 2020 Aug 12; 15(3):e0229933. PubMed ID: 32191723 [Abstract] [Full Text] [Related]
5. Moderate elevation of intracellular creatine by targeting the creatine transporter protects mice from acute myocardial infarction. Lygate CA, Bohl S, ten Hove M, Faller KM, Ostrowski PJ, Zervou S, Medway DJ, Aksentijevic D, Sebag-Montefiore L, Wallis J, Clarke K, Watkins H, Schneider JE, Neubauer S. Cardiovasc Res; 2012 Dec 01; 96(3):466-75. PubMed ID: 22915766 [Abstract] [Full Text] [Related]
6. Overexpression of mitochondrial creatine kinase preserves cardiac energetics without ameliorating murine chronic heart failure. Cao F, Maguire ML, McAndrew DJ, Lake HA, Neubauer S, Zervou S, Schneider JE, Lygate CA. Basic Res Cardiol; 2020 Jan 10; 115(2):12. PubMed ID: 31925563 [Abstract] [Full Text] [Related]
7. Over-expression of mitochondrial creatine kinase in the murine heart improves functional recovery and protects against injury following ischaemia-reperfusion. Whittington HJ, Ostrowski PJ, McAndrew DJ, Cao F, Shaw A, Eykyn TR, Lake HA, Tyler J, Schneider JE, Neubauer S, Zervou S, Lygate CA. Cardiovasc Res; 2018 May 01; 114(6):858-869. PubMed ID: 29509881 [Abstract] [Full Text] [Related]
8. Measuring inorganic phosphate and intracellular pH in the healthy and hypertrophic cardiomyopathy hearts by in vivo 7T 31P-cardiovascular magnetic resonance spectroscopy. Valkovič L, Clarke WT, Schmid AI, Raman B, Ellis J, Watkins H, Robson MD, Neubauer S, Rodgers CT. J Cardiovasc Magn Reson; 2019 Mar 14; 21(1):19. PubMed ID: 30871562 [Abstract] [Full Text] [Related]
9. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice. Aliev MK, van Dorsten FA, Nederhoff MG, van Echteld CJ, Veksler V, Nicolay K, Saks VA. Mol Cell Biochem; 1998 Jul 14; 184(1-2):209-29. PubMed ID: 9746323 [Abstract] [Full Text] [Related]
11. Mice over-expressing the myocardial creatine transporter develop progressive heart failure and show decreased glycolytic capacity. Phillips D, Ten Hove M, Schneider JE, Wu CO, Sebag-Montefiore L, Aponte AM, Lygate CA, Wallis J, Clarke K, Watkins H, Balaban RS, Neubauer S. J Mol Cell Cardiol; 2010 Apr 07; 48(4):582-90. PubMed ID: 19913546 [Abstract] [Full Text] [Related]
12. Cardiac function and energetics in mice with combined genetic augmentation of creatine and creatine kinase activity. Zervou S, McAndrew DJ, Lake HA, Kuznecova E, Preece C, Davies B, Neubauer S, Lygate CA. J Mol Cell Cardiol; 2024 Nov 07; 196():105-114. PubMed ID: 39276853 [Abstract] [Full Text] [Related]
13. Creatine kinase overexpression improves ATP kinetics and contractile function in postischemic myocardium. Akki A, Su J, Yano T, Gupta A, Wang Y, Leppo MK, Chacko VP, Steenbergen C, Weiss RG. Am J Physiol Heart Circ Physiol; 2012 Oct 01; 303(7):H844-52. PubMed ID: 22886411 [Abstract] [Full Text] [Related]
15. Maintaining energy provision in the heart: the creatine kinase system in ischaemia-reperfusion injury and chronic heart failure. Lygate CA. Clin Sci (Lond); 2024 Apr 24; 138(8):491-514. PubMed ID: 38639724 [Abstract] [Full Text] [Related]
16. 31P NMR studies of creatine kinase flux in M-creatine kinase-deficient mouse heart. Van Dorsten FA, Nederhoff MG, Nicolay K, Van Echteld CJ. Am J Physiol; 1998 Oct 24; 275(4):H1191-9. PubMed ID: 9746466 [Abstract] [Full Text] [Related]
17. 31P NMR 2D Mapping of Creatine Kinase Forward Flux Rate in Hearts with Postinfarction Left Ventricular Remodeling in Response to Cell Therapy. Gao L, Cui W, Zhang P, Jang A, Zhu W, Zhang J. PLoS One; 2016 Oct 24; 11(9):e0162149. PubMed ID: 27606901 [Abstract] [Full Text] [Related]
18. Investigating cardiac energetics in heart failure. Lygate CA, Schneider JE, Neubauer S. Exp Physiol; 2013 Mar 24; 98(3):601-5. PubMed ID: 22983996 [Abstract] [Full Text] [Related]
19. Phosphocreatine protects ATP from a fructose load in transgenic mouse liver expressing creatine kinase. Brosnan MJ, Chen LH, Wheeler CE, Van Dyke TA, Koretsky AP. Am J Physiol; 1991 Jun 24; 260(6 Pt 1):C1191-200. PubMed ID: 2058653 [Abstract] [Full Text] [Related]
20. Abnormal energetics and ATP depletion in pressure-overload mouse hearts: in vivo high-energy phosphate concentration measures by noninvasive magnetic resonance. Gupta A, Chacko VP, Weiss RG. Am J Physiol Heart Circ Physiol; 2009 Jul 24; 297(1):H59-64. PubMed ID: 19448147 [Abstract] [Full Text] [Related] Page: [Next] [New Search]