These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
171 related items for PubMed ID: 36748569
1. The Sinorhizobium meliloti NspS-MbaA system affects biofilm formation, exopolysaccharide production and motility in response to specific polyamines. Chávez-Jacobo VM, Becerra-Rivera VA, Guerrero G, Dunn MF. Microbiology (Reading); 2023 Jan; 169(1):. PubMed ID: 36748569 [Abstract] [Full Text] [Related]
5. Role of specific quorum-sensing signals in the regulation of exopolysaccharide II production within Sinorhizobium meliloti spreading colonies. Gao M, Coggin A, Yagnik K, Teplitski M. PLoS One; 2012 Jan; 7(8):e42611. PubMed ID: 22912712 [Abstract] [Full Text] [Related]
6. A mutagenic screen reveals NspS residues important for regulation of Vibrio cholerae biofilm formation. Young EC, Baumgartner JT, Karatan E, Kuhn ML. Microbiology (Reading); 2021 Mar; 167(3):. PubMed ID: 33502310 [Abstract] [Full Text] [Related]
7. Cyclic Di-GMP Regulates Multiple Cellular Functions in the Symbiotic Alphaproteobacterium Sinorhizobium meliloti. Schäper S, Krol E, Skotnicka D, Kaever V, Hilker R, Søgaard-Andersen L, Becker A. J Bacteriol; 2016 Feb 01; 198(3):521-35. PubMed ID: 26574513 [Abstract] [Full Text] [Related]
8. Synergy between c-di-GMP and Quorum-Sensing Signaling in Vibrio cholerae Biofilm Morphogenesis. Prentice JA, Bridges AA, Bassler BL. J Bacteriol; 2022 Oct 18; 204(10):e0024922. PubMed ID: 36154360 [Abstract] [Full Text] [Related]
9. Exopolysaccharide II Is Relevant for the Survival of Sinorhizobium meliloti under Water Deficiency and Salinity Stress. Primo E, Bogino P, Cossovich S, Foresto E, Nievas F, Giordano W. Molecules; 2020 Oct 22; 25(21):. PubMed ID: 33105680 [Abstract] [Full Text] [Related]
10. Novel Genes and Regulators That Influence Production of Cell Surface Exopolysaccharides in Sinorhizobium meliloti. Barnett MJ, Long SR. J Bacteriol; 2018 Feb 01; 200(3):. PubMed ID: 29158240 [Abstract] [Full Text] [Related]
11. NspS, a predicted polyamine sensor, mediates activation of Vibrio cholerae biofilm formation by norspermidine. Karatan E, Duncan TR, Watnick PI. J Bacteriol; 2005 Nov 01; 187(21):7434-43. PubMed ID: 16237027 [Abstract] [Full Text] [Related]
13. The low-molecular-weight fraction of exopolysaccharide II from Sinorhizobium meliloti is a crucial determinant of biofilm formation. Rinaudi LV, González JE. J Bacteriol; 2009 Dec 01; 191(23):7216-24. PubMed ID: 19783627 [Abstract] [Full Text] [Related]
14. Polyamine biosynthesis and biological roles in rhizobia. Becerra-Rivera VA, Dunn MF. FEMS Microbiol Lett; 2019 Apr 01; 366(7):. PubMed ID: 31062028 [Abstract] [Full Text] [Related]
15. A Bifunctional UDP-Sugar 4-Epimerase Supports Biosynthesis of Multiple Cell Surface Polysaccharides in Sinorhizobium meliloti. Schäper S, Wendt H, Bamberger J, Sieber V, Schmid J, Becker A. J Bacteriol; 2019 May 15; 201(10):. PubMed ID: 30833352 [Abstract] [Full Text] [Related]
16. Cell Autoaggregation, Biofilm Formation, and Plant Attachment in a Sinorhizobium meliloti lpsB Mutant. Sorroche F, Bogino P, Russo DM, Zorreguieta A, Nievas F, Morales GM, Hirsch AM, Giordano W. Mol Plant Microbe Interact; 2018 Oct 15; 31(10):1075-1082. PubMed ID: 30136892 [Abstract] [Full Text] [Related]
17. A positive correlation between bacterial autoaggregation and biofilm formation in native Sinorhizobium meliloti isolates from Argentina. Sorroche FG, Spesia MB, Zorreguieta A, Giordano W. Appl Environ Microbiol; 2012 Jun 15; 78(12):4092-101. PubMed ID: 22492433 [Abstract] [Full Text] [Related]