These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


175 related items for PubMed ID: 36757033

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Full-count PET recovery from low-count image using a dilated convolutional neural network.
    Spuhler K, Serrano-Sosa M, Cattell R, DeLorenzo C, Huang C.
    Med Phys; 2020 Oct; 47(10):4928-4938. PubMed ID: 32687608
    [Abstract] [Full Text] [Related]

  • 4. Texture transformer super-resolution for low-dose computed tomography.
    Zhou S, Yu L, Jin M.
    Biomed Phys Eng Express; 2022 Nov 04; 8(6):. PubMed ID: 36301699
    [Abstract] [Full Text] [Related]

  • 5. Learning low-dose CT degradation from unpaired data with flow-based model.
    Liu X, Liang X, Deng L, Tan S, Xie Y.
    Med Phys; 2022 Dec 04; 49(12):7516-7530. PubMed ID: 35880375
    [Abstract] [Full Text] [Related]

  • 6. Virtual high-count PET image generation using a deep learning method.
    Liu J, Ren S, Wang R, Mirian N, Tsai YJ, Kulon M, Pucar D, Chen MK, Liu C.
    Med Phys; 2022 Sep 04; 49(9):5830-5840. PubMed ID: 35880541
    [Abstract] [Full Text] [Related]

  • 7. FNSAM: Image super-resolution using a feedback network with self-attention mechanism.
    Huang Y, Wang W, Li M.
    Technol Health Care; 2023 Sep 04; 31(S1):383-395. PubMed ID: 37066938
    [Abstract] [Full Text] [Related]

  • 8. Structure-preserved meta-learning uniting network for improving low-dose CT quality.
    Zhu M, Mao Z, Li D, Wang Y, Zeng D, Bian Z, Ma J.
    Phys Med Biol; 2022 Dec 12; 67(24):. PubMed ID: 36351294
    [Abstract] [Full Text] [Related]

  • 9. Autoencoder-Inspired Convolutional Network-Based Super-Resolution Method in MRI.
    Park S, Gach HM, Kim S, Lee SJ, Motai Y.
    IEEE J Transl Eng Health Med; 2021 Dec 12; 9():1800113. PubMed ID: 34168920
    [Abstract] [Full Text] [Related]

  • 10. Attention-based deep neural network for partial volume correction in brain 18F-FDG PET imaging.
    Azimi M, Kamali-Asl A, Ay MR, Zeraatkar N, Hosseini MS, Sanaat A, Arabi H.
    Phys Med; 2024 Mar 12; 119():103315. PubMed ID: 38377837
    [Abstract] [Full Text] [Related]

  • 11. MRI super-resolution reconstruction for MRI-guided adaptive radiotherapy using cascaded deep learning: In the presence of limited training data and unknown translation model.
    Chun J, Zhang H, Gach HM, Olberg S, Mazur T, Green O, Kim T, Kim H, Kim JS, Mutic S, Park JC.
    Med Phys; 2019 Sep 12; 46(9):4148-4164. PubMed ID: 31309585
    [Abstract] [Full Text] [Related]

  • 12. A Generative Adversarial Network technique for high-quality super-resolution reconstruction of cardiac magnetic resonance images.
    Zhao M, Wei Y, Wong KKL.
    Magn Reson Imaging; 2022 Jan 12; 85():153-160. PubMed ID: 34699953
    [Abstract] [Full Text] [Related]

  • 13. Full-dose whole-body PET synthesis from low-dose PET using high-efficiency denoising diffusion probabilistic model: PET consistency model.
    Pan S, Abouei E, Peng J, Qian J, Wynne JF, Wang T, Chang CW, Roper J, Nye JA, Mao H, Yang X.
    Med Phys; 2024 Aug 12; 51(8):5468-5478. PubMed ID: 38588512
    [Abstract] [Full Text] [Related]

  • 14. Deep-learning prediction of amyloid deposition from early-phase amyloid positron emission tomography imaging.
    Komori S, Cross DJ, Mills M, Ouchi Y, Nishizawa S, Okada H, Norikane T, Thientunyakit T, Anzai Y, Minoshima S.
    Ann Nucl Med; 2022 Oct 12; 36(10):913-921. PubMed ID: 35913591
    [Abstract] [Full Text] [Related]

  • 15. Temporally downsampled cerebral CT perfusion image restoration using deep residual learning.
    Zhu H, Tong D, Zhang L, Wang S, Wu W, Tang H, Chen Y, Luo L, Zhu J, Li B.
    Int J Comput Assist Radiol Surg; 2020 Feb 12; 15(2):193-201. PubMed ID: 31673961
    [Abstract] [Full Text] [Related]

  • 16. Ultra-low-dose PET reconstruction using generative adversarial network with feature matching and task-specific perceptual loss.
    Ouyang J, Chen KT, Gong E, Pauly J, Zaharchuk G.
    Med Phys; 2019 Aug 12; 46(8):3555-3564. PubMed ID: 31131901
    [Abstract] [Full Text] [Related]

  • 17. Short-axis PET image quality improvement based on a uEXPLORER total-body PET system through deep learning.
    Huang Z, Li W, Wu Y, Guo N, Yang L, Zhang N, Pang Z, Yang Y, Zhou Y, Shang Y, Zheng H, Liang D, Wang M, Hu Z.
    Eur J Nucl Med Mol Imaging; 2023 Dec 12; 51(1):27-39. PubMed ID: 37672046
    [Abstract] [Full Text] [Related]

  • 18. Adapting a low-count acquisition of the bone scintigraphy using deep denoising super-resolution convolutional neural network.
    Ito T, Maeno T, Tsuchikame H, Shishido M, Nishi K, Kojima S, Hayashi T, Suzuki K.
    Phys Med; 2022 Aug 12; 100():18-25. PubMed ID: 35716484
    [Abstract] [Full Text] [Related]

  • 19. A Transformer-Based Model for Super-Resolution of Anime Image.
    Xu S, Dutta V, He X, Matsumaru T.
    Sensors (Basel); 2022 Oct 24; 22(21):. PubMed ID: 36365830
    [Abstract] [Full Text] [Related]

  • 20. A hybrid convolutional neural network for super-resolution reconstruction of MR images.
    Zheng Y, Zhen B, Chen A, Qi F, Hao X, Qiu B.
    Med Phys; 2020 Jul 24; 47(7):3013-3022. PubMed ID: 32201956
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.