These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
156 related items for PubMed ID: 36758663
1. Metabolic reprogramming and biosensor-assisted mutagenesis screening for high-level production of L-arginine in Escherichia coli. Jiang S, Wang R, Wang D, Zhao C, Ma Q, Wu H, Xie X. Metab Eng; 2023 Mar; 76():146-157. PubMed ID: 36758663 [Abstract] [Full Text] [Related]
2. Design of a genetically encoded biosensor to establish a high-throughput screening platform for L-cysteine overproduction. Gao J, Du M, Zhao J, Yue Zhang, Xu N, Du H, Ju J, Wei L, Liu J. Metab Eng; 2022 Sep; 73():144-157. PubMed ID: 35921946 [Abstract] [Full Text] [Related]
3. Reconstructing a recycling and nonauxotroph biosynthetic pathway in Escherichia coli toward highly efficient production of L-citrulline. Jiang S, Wang D, Wang R, Zhao C, Ma Q, Wu H, Xie X. Metab Eng; 2021 Nov; 68():220-231. PubMed ID: 34688880 [Abstract] [Full Text] [Related]
4. Biosensor-Coupled In Vivo Mutagenesis and Omics Analysis Reveals Reduced Lysine and Arginine Synthesis To Improve Malonyl-Coenzyme A Flux in Saccharomyces cerevisiae. Qiu C, Huang M, Hou Y, Tao H, Zhao J, Shen Y, Bao X, Qi Q, Hou J. mSystems; 2022 Apr 26; 7(2):e0136621. PubMed ID: 35229648 [Abstract] [Full Text] [Related]
5. Integrated strain engineering and bioprocessing strategies for high-level bio-based production of 3-hydroxyvalerate in Escherichia coli. Miscevic D, Mao JY, Kefale T, Abedi D, Huang CC, Moo-Young M, Chou CP. Appl Microbiol Biotechnol; 2020 Jun 26; 104(12):5259-5272. PubMed ID: 32291486 [Abstract] [Full Text] [Related]
6. Monitoring in vivo metabolic flux with a designed whole-cell metabolite biosensor of shikimic acid. Li H, Liang C, Chen W, Jin JM, Tang SY, Tao Y. Biosens Bioelectron; 2017 Dec 15; 98():457-465. PubMed ID: 28715793 [Abstract] [Full Text] [Related]
7. Development of a gene-coded biosensor to establish a high-throughput screening platform for salidroside production. Yang J, Xia Y, Shen W, Yang H, Chen X. Biochem Biophys Res Commun; 2024 Jun 18; 712-713():149942. PubMed ID: 38642492 [Abstract] [Full Text] [Related]
8. Biosensor-assisted evolution for high-level production of 4-hydroxyphenylacetic acid in Escherichia coli. Shen YP, Pan Y, Niu FX, Liao YL, Huang M, Liu JZ. Metab Eng; 2022 Mar 18; 70():1-11. PubMed ID: 34965469 [Abstract] [Full Text] [Related]
9. Construction of a plasmid-free L-leucine overproducing Escherichia coli strain through reprogramming of the metabolic flux. Hao Y, Pan X, Li G, You J, Zhang H, Yan S, Xu M, Rao Z. Biotechnol Biofuels Bioprod; 2023 Sep 29; 16(1):145. PubMed ID: 37775757 [Abstract] [Full Text] [Related]
10. De novo phenol bioproduction from glucose using biosensor-assisted microbial coculture engineering. Guo X, Li Z, Wang X, Wang J, Chala J, Lu Y, Zhang H. Biotechnol Bioeng; 2019 Dec 29; 116(12):3349-3359. PubMed ID: 31529699 [Abstract] [Full Text] [Related]
11. Metabolic engineering of E. coli for β-alanine production using a multi-biosensor enabled approach. Yuan SF, Nair PH, Borbon D, Coleman SM, Fan PH, Lin WL, Alper HS. Metab Eng; 2022 Nov 29; 74():24-35. PubMed ID: 36067877 [Abstract] [Full Text] [Related]
12. Engineering of the Lrp/AsnC-type transcriptional regulator DecR as a genetically encoded biosensor for multilevel optimization of L-cysteine biosynthesis pathway in Escherichia coli. Zhou Z, Li Z, Zhong Y, Xu S, Li Z. Biotechnol Bioeng; 2024 Jul 29; 121(7):2133-2146. PubMed ID: 38634289 [Abstract] [Full Text] [Related]
13. Metabolic engineering of Escherichia coli for enhanced arginine biosynthesis. Ginesy M, Belotserkovsky J, Enman J, Isaksson L, Rova U. Microb Cell Fact; 2015 Mar 07; 14():29. PubMed ID: 25890272 [Abstract] [Full Text] [Related]
14. Systems engineering of Escherichia coli for high-level shikimate production. Li Z, Gao C, Ye C, Guo L, Liu J, Chen X, Song W, Wu J, Liu L. Metab Eng; 2023 Jan 07; 75():1-11. PubMed ID: 36328295 [Abstract] [Full Text] [Related]
15. Biosensor-driven, model-based optimization of the orthogonally expressed naringenin biosynthesis pathway. Van Brempt M, Peeters AI, Duchi D, De Wannemaeker L, Maertens J, De Paepe B, De Mey M. Microb Cell Fact; 2022 Mar 27; 21(1):49. PubMed ID: 35346204 [Abstract] [Full Text] [Related]
16. Layered dynamic regulation for improving metabolic pathway productivity in Escherichia coli. Doong SJ, Gupta A, Prather KLJ. Proc Natl Acad Sci U S A; 2018 Mar 20; 115(12):2964-2969. PubMed ID: 29507236 [Abstract] [Full Text] [Related]
17. Dynamic metabolic engineering of Escherichia coli improves fermentation for the production of pyruvate and its derivatives. Soma Y, Yamaji T, Hanai T. J Biosci Bioeng; 2022 Jan 20; 133(1):56-63. PubMed ID: 34674961 [Abstract] [Full Text] [Related]
18. Biosensor-Based Multigene Pathway Optimization for Enhancing the Production of Glycolate. Xu S, Zhang L, Zhou S, Deng Y. Appl Environ Microbiol; 2021 May 26; 87(12):e0011321. PubMed ID: 33837017 [Abstract] [Full Text] [Related]
19. Engineering of Corynebacterium glutamicum for high-level γ-aminobutyric acid production from glycerol by dynamic metabolic control. Wei L, Zhao J, Wang Y, Gao J, Du M, Zhang Y, Xu N, Du H, Ju J, Liu Q, Liu J. Metab Eng; 2022 Jan 26; 69():134-146. PubMed ID: 34856366 [Abstract] [Full Text] [Related]
20. Combining Protein and Metabolic Engineering Strategies for High-Level Production of O-Acetylhomoserine in Escherichia coli. Wei L, Wang Q, Xu N, Cheng J, Zhou W, Han G, Jiang H, Liu J, Ma Y. ACS Synth Biol; 2019 May 17; 8(5):1153-1167. PubMed ID: 30973696 [Abstract] [Full Text] [Related] Page: [Next] [New Search]