These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


193 related items for PubMed ID: 3676340

  • 1. Effect of albumin on the solubility of cholesterol in bile.
    Fukudome K, Chijiiwa K, Furusawa T, Nakayama F.
    Biochim Biophys Acta; 1987 Nov 21; 922(2):155-61. PubMed ID: 3676340
    [Abstract] [Full Text] [Related]

  • 2. Cholesterol gallstone dissolution in bile. Dissolution kinetics of crystalline cholesterol monohydrate by conjugated chenodeoxycholate-lecithin and conjugated ursodeoxycholate-lecithin mixtures: dissimilar phase equilibria and dissolution mechanisms.
    Salvioli G, Igimi H, Carey MC.
    J Lipid Res; 1983 Jun 21; 24(6):701-20. PubMed ID: 6886562
    [Abstract] [Full Text] [Related]

  • 3. Epigallocatechin gallate decreases the micellar solubility of cholesterol via specific interaction with phosphatidylcholine.
    Kobayashi M, Nishizawa M, Inoue N, Hosoya T, Yoshida M, Ukawa Y, Sagesaka YM, Doi T, Nakayama T, Kumazawa S, Ikeda I.
    J Agric Food Chem; 2014 Apr 02; 62(13):2881-90. PubMed ID: 24628603
    [Abstract] [Full Text] [Related]

  • 4. Distribution and monomer activity of cholesterol in micellar bile salt: effect of cholesterol level.
    Chijiiwa K, Linscheer WG.
    Am J Physiol; 1987 Mar 02; 252(3 Pt 1):G309-14. PubMed ID: 3826370
    [Abstract] [Full Text] [Related]

  • 5. The hydrophobic-hydrophilic balance of bile salts. Inverse correlation between reverse-phase high performance liquid chromatographic mobilities and micellar cholesterol-solubilizing capacities.
    Armstrong MJ, Carey MC.
    J Lipid Res; 1982 Jan 02; 23(1):70-80. PubMed ID: 7057113
    [Abstract] [Full Text] [Related]

  • 6. Differences in the release of cholesterol from taurocholate versus taurochenodeoxycholate micellar solutions.
    Chijiiwa K, Kiyosawa R, Fukudome K, Nakayama F.
    Biochim Biophys Acta; 1988 Sep 23; 962(2):208-13. PubMed ID: 3167078
    [Abstract] [Full Text] [Related]

  • 7. Analysis of the solubilization of steroids by bile salt micelles.
    Cai X, Grant DJ, Wiedmann TS.
    J Pharm Sci; 1997 Mar 23; 86(3):372-7. PubMed ID: 9050808
    [Abstract] [Full Text] [Related]

  • 8. Contribution of vesicular and micellar carriers to cholesterol transport in human bile.
    Sömjen GJ, Gilat T.
    J Lipid Res; 1985 Jun 23; 26(6):699-704. PubMed ID: 4031648
    [Abstract] [Full Text] [Related]

  • 9. Kinetics and thermodynamics of dissolution of lecithin by bile salts.
    Lindenbaum S, Rajagopalan N.
    Hepatology; 1984 Jun 23; 4(5 Suppl):124S-128S. PubMed ID: 6479867
    [Abstract] [Full Text] [Related]

  • 10. Stability of mixed micellar systems made by solubilizing phosphatidylcholine-cholesterol vesicles by bile salts.
    Lichtenberg D, Ragimova S, Bor A, Almog S, Vinkler C, Peled Y, Halpern Z.
    Hepatology; 1990 Sep 23; 12(3 Pt 2):149S-153S; discussion 153S-154S. PubMed ID: 2210643
    [Abstract] [Full Text] [Related]

  • 11. Interaction between Tea Polyphenols and Bile Acid Inhibits Micellar Cholesterol Solubility.
    Ogawa K, Hirose S, Nagaoka S, Yanase E.
    J Agric Food Chem; 2016 Jan 13; 64(1):204-9. PubMed ID: 26651358
    [Abstract] [Full Text] [Related]

  • 12. Bile salt micelle can sustain more cholesterol in the intermicellar aqueous phase than the maximal aqueous solubility.
    Chijiiwa K, Nagai M.
    Arch Biochem Biophys; 1989 May 01; 270(2):472-7. PubMed ID: 2705774
    [Abstract] [Full Text] [Related]

  • 13. Kinetics and thermodynamics of the formation of mixed micelles of egg phosphatidylcholine and bile salts.
    Rajagopalan N, Lindenbaum S.
    J Lipid Res; 1984 Feb 01; 25(2):135-47. PubMed ID: 6323607
    [Abstract] [Full Text] [Related]

  • 14. Aqueous bile salt-lecithin-cholesterol systems: equilibrium aspects.
    Carey MC.
    Hepatology; 1984 Feb 01; 4(5 Suppl):151S-154S. PubMed ID: 6479872
    [Abstract] [Full Text] [Related]

  • 15. Distribution and partitioning of cholesterol and beta-sitosterol in micellar bile salt solutions.
    Chijiiwa K.
    Am J Physiol; 1987 Sep 01; 253(3 Pt 1):G268-73. PubMed ID: 3631263
    [Abstract] [Full Text] [Related]

  • 16. Precipitation of calcium palmitate from bile salt-containing dispersions.
    Lichtenberg D, Werker E, Bor A, Almog S, Nir S.
    Chem Phys Lipids; 1988 Oct 01; 48(3-4):231-43. PubMed ID: 3242951
    [Abstract] [Full Text] [Related]

  • 17. Micelle formation of sodium chenodeoxycholate and solubilization into the micelles: comparison with other unconjugated bile salts.
    Ninomiya R, Matsuoka K, Moroi Y.
    Biochim Biophys Acta; 2003 Nov 15; 1634(3):116-25. PubMed ID: 14643799
    [Abstract] [Full Text] [Related]

  • 18. Phytosterol ester constituents affect micellar cholesterol solubility in model bile.
    Brown AW, Hang J, Dussault PH, Carr TP.
    Lipids; 2010 Sep 15; 45(9):855-62. PubMed ID: 20706798
    [Abstract] [Full Text] [Related]

  • 19. Influence of the products of phospholipolysis of phosphatidylcholine on micellar solubilization of fatty acids in the presence of bile salts.
    Lough AK, Smith A.
    Br J Nutr; 1976 Jan 15; 35(1):89-96. PubMed ID: 1083
    [Abstract] [Full Text] [Related]

  • 20. Bile acid solubility and precipitation in vitro and in vivo: the role of conjugation, pH, and Ca2+ ions.
    Hofmann AF, Mysels KJ.
    J Lipid Res; 1992 May 15; 33(5):617-26. PubMed ID: 1619357
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.