These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
210 related items for PubMed ID: 36769191
21. Roles of the Endoplasmic Reticulum Stress Transducer OASIS in Ossification of the Posterior Longitudinal Ligament. Chen Y, Yang H, Miao J, Liu X, Wang X, Chen D. Clin Spine Surg; 2017 Feb; 30(1):E19-E24. PubMed ID: 28107238 [Abstract] [Full Text] [Related]
22. The Effect of the NFκB-USP9X-Cx43 Axis on the Dynamic Balance of Bone Formation/Degradation during Ossification of the Posterior Longitudinal Ligament of the Cervical Spine. Yuan X, Guo Y, Liu J, Sun J, Shi L, Miao J, Shi J, Chen Y. Oxid Med Cell Longev; 2022 Feb; 2022():1604932. PubMed ID: 35391932 [Abstract] [Full Text] [Related]
23. Roles and mechanisms of leptin in osteogenic stimulation in cervical ossification of the posterior longitudinal ligament. Feng B, Cao S, Zhai J, Ren Y, Hu J, Tian Y, Weng X. J Orthop Surg Res; 2018 Jul 03; 13(1):165. PubMed ID: 29970120 [Abstract] [Full Text] [Related]
24. Pathophysiological role of endothelin in ectopic ossification of human spinal ligaments induced by mechanical stress. Iwasawa T, Iwasaki K, Sawada T, Okada A, Ueyama K, Motomura S, Harata S, Inoue I, Toh S, Furukawa KI. Calcif Tissue Int; 2006 Dec 03; 79(6):422-30. PubMed ID: 17160579 [Abstract] [Full Text] [Related]
25. Long Non-coding RNA XIST May Influence Cervical Ossification of the Posterior Longitudinal Ligament Through Regulation of miR-17-5P/AHNAK/BMP2 Signaling Pathway. Liao X, Tang D, Yang H, Chen Y, Chen D, Jia L, Yang L, Chen X. Calcif Tissue Int; 2019 Dec 03; 105(6):670-680. PubMed ID: 31511959 [Abstract] [Full Text] [Related]
26. Ossification of the Ligaments in the Cervical Spine, Including Ossification of the Anterior Longitudinal Ligament, Ossification of the Posterior Longitudinal Ligament, and Ossification of the Ligamentum Flavum. Ohara Y. Neurosurg Clin N Am; 2018 Jan 03; 29(1):63-68. PubMed ID: 29173437 [Abstract] [Full Text] [Related]
27. Current topics in pharmacological research on bone metabolism: Promyelotic leukemia zinc finger (PLZF) and tumor necrosis factor-alpha-stimulated gene 6 (TSG-6) identified by gene expression analysis play roles in the pathogenesis of ossification of the posterior longitudinal ligament. Inoue I, Ikeda R, Tsukahara S. J Pharmacol Sci; 2006 Mar 03; 100(3):205-10. PubMed ID: 16547399 [Abstract] [Full Text] [Related]
28. Role of prostaglandin I2 in the gene expression induced by mechanical stress in spinal ligament cells derived from patients with ossification of the posterior longitudinal ligament. Ohishi H, Furukawa K, Iwasaki K, Ueyama K, Okada A, Motomura S, Harata S, Toh S. J Pharmacol Exp Ther; 2003 Jun 03; 305(3):818-24. PubMed ID: 12606604 [Abstract] [Full Text] [Related]
29. [MicroRNA-563 promotes the osteogenic differentiation of posterior longitudinal ligament cells by inhibiting SMURF1]. Zhang H, Xu C, Liu Y, Yuan W. Zhonghua Wai Ke Za Zhi; 2017 Mar 01; 55(3):203-207. PubMed ID: 28241722 [Abstract] [Full Text] [Related]
30. Expression Analysis of Susceptibility Genes for Ossification of the Posterior Longitudinal Ligament of the Cervical Spine in Human OPLL-related Tissues and a Spinal Hyperostotic Mouse (ttw/ttw). Nakajima H, Watanabe S, Honjoh K, Okawa A, Matsumoto M, Matsumine A. Spine (Phila Pa 1976); 2020 Nov 15; 45(22):E1460-E1468. PubMed ID: 32756283 [Abstract] [Full Text] [Related]
31. Connexin 43 promotes ossification of the posterior longitudinal ligament through activation of the ERK1/2 and p38 MAPK pathways. Chen D, Liu Y, Yang H, Chen D, Zhang X, Fermandes JC, Chen Y. Cell Tissue Res; 2016 Mar 15; 363(3):765-73. PubMed ID: 26334722 [Abstract] [Full Text] [Related]
32. Indian hedgehog signaling promotes chondrocyte differentiation in enchondral ossification in human cervical ossification of the posterior longitudinal ligament. Sugita D, Yayama T, Uchida K, Kokubo Y, Nakajima H, Yamagishi A, Takeura N, Baba H. Spine (Phila Pa 1976); 2013 Oct 15; 38(22):E1388-96. PubMed ID: 23883825 [Abstract] [Full Text] [Related]
33. Bone morphogenetic protein-2 stimulates differentiation of cultured spinal ligament cells from patients with ossification of the posterior longitudinal ligament. Kon T, Yamazaki M, Tagawa M, Goto S, Terakado A, Moriya H, Fujimura S. Calcif Tissue Int; 1997 Mar 15; 60(3):291-6. PubMed ID: 9069168 [Abstract] [Full Text] [Related]
36. Insulin potentiates the proliferation and bone morphogenetic protein-2-induced osteogenic differentiation of rat spinal ligament cells via extracellular signal-regulated kinase and phosphatidylinositol 3-kinase. Li H, Liu D, Zhao CQ, Jiang LS, Dai LY. Spine (Phila Pa 1976); 2008 Oct 15; 33(22):2394-402. PubMed ID: 18923314 [Abstract] [Full Text] [Related]
38. Genetic polymorphisms in bone morphogenetic protein receptor type IA gene predisposes individuals to ossification of the posterior longitudinal ligament of the cervical spine via the smad signaling pathway. Wang H, Jin W, Li H. BMC Musculoskelet Disord; 2018 Feb 20; 19(1):61. PubMed ID: 29458345 [Abstract] [Full Text] [Related]
39. Long non-coding RNA MALAT1 functions as miR-1 sponge to regulate Connexin 43-mediated ossification of the posterior longitudinal ligament. Yuan X, Guo Y, Chen D, Luo Y, Chen D, Miao J, Chen Y. Bone; 2019 Oct 20; 127():305-314. PubMed ID: 31280017 [Abstract] [Full Text] [Related]
40. Integrin αVβ3 antagonist-c(RGDyk) peptide attenuates the progression of ossification of the posterior longitudinal ligament by inhibiting osteogenesis and angiogenesis. Geng X, Tang Y, Gu C, Zeng J, Zhao Y, Zhou Q, Jia L, Zhou S, Chen X. Mol Med; 2024 May 02; 30(1):57. PubMed ID: 38698308 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]