These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
148 related items for PubMed ID: 36770574
21. Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties. Seantier B, Bendahou D, Bendahou A, Grohens Y, Kaddami H. Carbohydr Polym; 2016 Mar 15; 138():335-48. PubMed ID: 26794770 [Abstract] [Full Text] [Related]
22. [Utilization of UiO-66-NH2@cellulose hybrid aerogel for solid-phase extraction of sildenafil in health products]. Chen Z, Wu Y, Tan X, Meng J, Cen J, Liu M. Se Pu; 2022 Jun 15; 40(6):556-564. PubMed ID: 35616201 [Abstract] [Full Text] [Related]
23. Highly flexible magnetic composite aerogels prepared by using cellulose nanofibril networks as templates. Liu S, Yan Q, Tao D, Yu T, Liu X. Carbohydr Polym; 2012 Jun 20; 89(2):551-7. PubMed ID: 24750757 [Abstract] [Full Text] [Related]
24. A facile slow-gel method for bulk Al-doped carboxymethyl cellulose aerogels with excellent flame retardancy. Hu W, Lu L, Li Z, Shao L. Carbohydr Polym; 2019 Mar 01; 207():352-361. PubMed ID: 30600017 [Abstract] [Full Text] [Related]
25. A facile approach to cellulose/multi-walled carbon nanotube gels-Structure, formation process and adsorption to methylene blue. Geng H, Qin M, Li J. Int J Biol Macromol; 2022 Sep 30; 217():417-427. PubMed ID: 35841958 [Abstract] [Full Text] [Related]
26. Synthesis, drying process and medical application of polysaccharide-based aerogels. El-Naggar ME, Othman SI, Allam AA, Morsy OM. Int J Biol Macromol; 2020 Feb 15; 145():1115-1128. PubMed ID: 31678101 [Abstract] [Full Text] [Related]
29. Cellulose-Based Hydrogels and Aerogels Embedded with Silver Nanoparticles: Preparation and Characterization. Vasil'kov A, Rubina M, Naumkin A, Buzin M, Dorovatovskii P, Peters G, Zubavichus Y. Gels; 2021 Jul 02; 7(3):. PubMed ID: 34287283 [Abstract] [Full Text] [Related]
30. Aerogels from Cellulose Phosphates of Low Degree of Substitution: A TBAF·H2O/DMSO Based Approach. Schimper CB, Pachschwoell PS, Hettegger H, Neouze MA, Nedelec JM, Wendland M, Rosenau T, Liebner F. Molecules; 2020 Apr 07; 25(7):. PubMed ID: 32272769 [Abstract] [Full Text] [Related]
31. Solvent Effects on Tuning Pore Structures in Polyimide Aerogels. Teo N, Jana SC. Langmuir; 2018 Jul 24; 34(29):8581-8590. PubMed ID: 29957959 [Abstract] [Full Text] [Related]
37. Synthesis and Properties of Metal Oxide Aerogels via Ambient Pressure Drying. Bangi UKH, Lee KY, Maldar NMN, Park HH. J Nanosci Nanotechnol; 2019 Mar 01; 19(3):1217-1227. PubMed ID: 30469167 [Abstract] [Full Text] [Related]
38. Pore size controllable preparation for low density porous nano-carbon. Feng Y, Wang J, Ge L, Jiang B, Miao L, Tanemura M. J Nanosci Nanotechnol; 2013 Oct 01; 13(10):7012-5. PubMed ID: 24245178 [Abstract] [Full Text] [Related]
39. CO2 capture performance and characterization of cellulose aerogels synthesized from old corrugated containers. Miao Y, Luo H, Pudukudy M, Zhi Y, Zhao W, Shan S, Jia Q, Ni Y. Carbohydr Polym; 2020 Jan 01; 227():115380. PubMed ID: 31590848 [Abstract] [Full Text] [Related]
40. Effects of Freeze-Drying Processes on the Acoustic Absorption Performance of Sustainable Cellulose Nanocrystal Aerogels. Ruan JQ, Xie KY, Wan JN, Chen QY, Zuo X, Li X, Wu X, Fei C, Yao S. Gels; 2024 Feb 12; 10(2):. PubMed ID: 38391471 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]