These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


126 related items for PubMed ID: 3677180

  • 1. Freeze-fracture electron microscopic observations on the effects of sulphydryl group reagents on human erythrocyte membranes.
    Benga G, Brain A, Pop VI, Hodarnau A, Wrigglesworth JM.
    Cell Biol Int Rep; 1987 Sep; 11(9):679-87. PubMed ID: 3677180
    [Abstract] [Full Text] [Related]

  • 2. Distribution of glycophorin on the surface of human erythrocyte membranes and its association with intramembrane particles: an immunochemical and freeze-fracture study of normal and En(a-) erythrocytes.
    Gahmberg CG, Taurén G, Virtanen I, Wartiovaara J.
    J Supramol Struct; 1978 Sep; 8(3):337-47. PubMed ID: 723269
    [Abstract] [Full Text] [Related]

  • 3. Phase separation in frozen erythrocyte membrane preparations.
    Finean JB, Hutchinson A, Mills D.
    J Microsc; 1985 Oct; 140(Pt 1):93-8. PubMed ID: 4093969
    [Abstract] [Full Text] [Related]

  • 4. Changes of the asymmetrical particle distribution in erythrocyte membranes.
    Richter W.
    Acta Histochem Suppl; 1981 Oct; 23():157-63. PubMed ID: 6784160
    [Abstract] [Full Text] [Related]

  • 5. Freeze-fracture analysis of intramembrane particles of erythrocytes from normal and dystrophic hamsters.
    Davis EC, Shivers RR.
    Anat Rec; 1986 Jun; 215(2):95-8. PubMed ID: 3729015
    [Abstract] [Full Text] [Related]

  • 6. Effects of amphotericin B and its methyl ester on plasma membranes of Candida albicans and erythrocytes as examined by freeze-fracture electron microscopy.
    Sekiya T, Yano K, Nozawa Y.
    Sabouraudia; 1982 Dec; 20(4):303-11. PubMed ID: 6760418
    [Abstract] [Full Text] [Related]

  • 7. The distribution and aggregatability of intramembrane particles in phenylhydrazine-treated human erythrocytes.
    Lelkes G, Fodor I, Lelkes G, Hollán SR, Verkleij AJ.
    Biochim Biophys Acta; 1988 Nov 03; 945(1):105-10. PubMed ID: 3179306
    [Abstract] [Full Text] [Related]

  • 8. Variations in the appearance of membrane particles after various pretreatments.
    Richter W.
    Acta Histochem Suppl; 1981 Nov 03; 23():165-71. PubMed ID: 6784161
    [Abstract] [Full Text] [Related]

  • 9. Alteration of human erythrocyte plasma membranes by perfringolysin O as revealed by freeze-fracture electron microscopy. Studies on Clostridium perfringens exotoxins V.
    Mitsui K, Sekiya T, Nozawa Y, Hase J.
    Biochim Biophys Acta; 1979 Jun 13; 554(1):68-75. PubMed ID: 222322
    [Abstract] [Full Text] [Related]

  • 10. Fusion of Sendai viruses or subviral envelope components with chicken erythrocytes observed by freeze-fracture electron microscopy.
    Hosaka Y, Yasuda Y, Fukai K, Ikeuchi Y.
    Microbiol Immunol; 1983 Jun 13; 27(1):25-41. PubMed ID: 6306407
    [Abstract] [Full Text] [Related]

  • 11. Freeze-fracture electron microscopy of human erythrocytes lacking the major membrane sialoglycoprotein.
    Bächi T, Whiting K, Tanner MJ, Metaxas MN, Anstee DJ.
    Biochim Biophys Acta; 1977 Feb 04; 464(3):635-9. PubMed ID: 836829
    [Abstract] [Full Text] [Related]

  • 12. Electron microscopy: assays involving freeze-fracture and freeze-etching.
    Tranum-Jensen J.
    Methods Enzymol; 1988 Feb 04; 165():374-89. PubMed ID: 3231115
    [No Abstract] [Full Text] [Related]

  • 13. Aggregation of intramembrane particles in erythrocyte membranes treated with diamide.
    Kurantsin-Mills J, Lessin LS.
    Biochim Biophys Acta; 1981 Feb 20; 641(1):129-37. PubMed ID: 7213709
    [Abstract] [Full Text] [Related]

  • 14. Ultrastructural and chemical analysis of the outer membrane leaflet of the human red blood cell.
    Nermut MV.
    Eur J Cell Biol; 1983 Sep 20; 31(2):296-304. PubMed ID: 6641741
    [Abstract] [Full Text] [Related]

  • 15. Water permeability in human erythrocytes: identification of membrane proteins involved in water transport.
    Benga G, Popescu O, Borza V, Pop VI, Muresan A, Mocsy I, Brain A, Wrigglesworth JM.
    Eur J Cell Biol; 1986 Aug 20; 41(2):252-62. PubMed ID: 3019699
    [Abstract] [Full Text] [Related]

  • 16. Membrane proteins of incubated erythrocytes: effect of sulphydryl inhibition.
    Zail SS, Van den Hoek AK.
    Br J Haematol; 1977 Nov 20; 37(3):353-61. PubMed ID: 603767
    [Abstract] [Full Text] [Related]

  • 17. Comparison fo metridiolysin from the sea anemone with thiol-activated cytolysins from bacteria.
    Bernheimer AW, Avigad LS, Kim K.
    Toxicon; 1979 Nov 20; 17(1):69-75. PubMed ID: 33471
    [No Abstract] [Full Text] [Related]

  • 18. The ultrastructural localization of tri-n-butyltin in human erythrocyte membranes during shape transformation leading to hemolysis.
    Porvaznik M, Gray BH, Mattie D, Jackson AG, Omlor RE.
    Lab Invest; 1986 Mar 20; 54(3):254-67. PubMed ID: 2419664
    [Abstract] [Full Text] [Related]

  • 19. Freeze-fracture ultrastructural alterations induced by filipin, pimaricin, nystatin and amphotericin B in the plasmia membranes of Epidermophyton, Saccharomyces and red complex-induced membrane lesions.
    Kitajima Y, Sekiya T, Nozawa Y.
    Biochim Biophys Acta; 1976 Dec 02; 455(2):452-65. PubMed ID: 793632
    [Abstract] [Full Text] [Related]

  • 20. The lateral distribution of intramembrane particles in the erythrocyte membrane and recombinant vesicles.
    Gerritsen WJ, Verkleij AJ, Van Deenen LL.
    Biochim Biophys Acta; 1979 Jul 19; 555(1):26-41. PubMed ID: 476098
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.