These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
138 related items for PubMed ID: 36779565
1. An aptamer-based colorimetric/SERS dual-mode sensing strategy for the detection of sulfadimethoxine residues in animal-derived foods. Zhang N, Lv H, Wang J, Yang Z, Ding Y, Zhao B, Tian Y. Anal Methods; 2023 Feb 23; 15(8):1047-1053. PubMed ID: 36779565 [Abstract] [Full Text] [Related]
2. Detection of Malachite Green using a colorimetric aptasensor based on the inhibition of the peroxidase-like activity of gold nanoparticles by cetyltrimethylammonium ions. Zhao C, Hong CY, Lin ZZ, Chen XM, Huang ZY. Mikrochim Acta; 2019 May 02; 186(5):322. PubMed ID: 31049692 [Abstract] [Full Text] [Related]
3. A dual-mode fluorometric/colorimetric sensor for sulfadimethoxine detection based on Prussian blue nanoparticles and carbon dots. Gao X, Liu L, Jia M, Zhang H, Li X, Li J. Mikrochim Acta; 2024 Apr 23; 191(5):284. PubMed ID: 38652331 [Abstract] [Full Text] [Related]
4. Colorimetric detection of Salmonella typhimurium based on hexadecyl trimethyl ammonium bromide-induced supramolecular assembly of β-cyclodextrin-capped gold nanoparticles. Wei S, Wang X, Wang F, Hao X, Li H, Su Z, Guo Y, Shi X, Liu X, Li J, Zhao C. Anal Bioanal Chem; 2022 Aug 23; 414(20):6069-6076. PubMed ID: 35689117 [Abstract] [Full Text] [Related]
5. Label-Free Fluorescence-Based Aptasensor for the Detection of Sulfadimethoxine in Water and Fish. Chen XX, Lin ZZ, Hong CY, Zhong HP, Yao QH, Huang ZY. Appl Spectrosc; 2019 Mar 23; 73(3):294-303. PubMed ID: 30838894 [Abstract] [Full Text] [Related]
6. Target-induced gold nanoparticles colorimetric sensing coupled with aptamer for rapid and high-sensitivity detecting kanamycin. Xu R, Cheng Y, Qi X, Li X, Zhang Z, Chen L, Sun T, Gao Z, Zhu M. Anal Chim Acta; 2022 Oct 16; 1230():340377. PubMed ID: 36192060 [Abstract] [Full Text] [Related]
7. A dichromatic label-free aptasensor for sulfadimethoxine detection in fish and water based on AuNPs color and fluorescent dyeing of double-stranded DNA with SYBR Green I. Chen XX, Lin ZZ, Hong CY, Yao QH, Huang ZY. Food Chem; 2020 Mar 30; 309():125712. PubMed ID: 31679852 [Abstract] [Full Text] [Related]
8. Colorimetric aptasensor for progesterone detection based on surfactant-induced aggregation of gold nanoparticles. Du G, Wang L, Zhang D, Ni X, Zhou X, Xu H, Xu L, Wu S, Zhang T, Wang W. Anal Biochem; 2016 Dec 01; 514():2-7. PubMed ID: 27615801 [Abstract] [Full Text] [Related]
9. Colorimetric aptasensor using unmodified gold nanoparticles for homogeneous multiplex detection. Niu S, Lv Z, Liu J, Bai W, Yang S, Chen A. PLoS One; 2014 Dec 01; 9(10):e109263. PubMed ID: 25279730 [Abstract] [Full Text] [Related]
10. High sensitive rapid visual detection of sulfadimethoxine by label-free aptasensor. Chen A, Jiang X, Zhang W, Chen G, Zhao Y, Tunio TM, Liu J, Lv Z, Li C, Yang S. Biosens Bioelectron; 2013 Apr 15; 42():419-25. PubMed ID: 23228493 [Abstract] [Full Text] [Related]
11. Aptamer-functionalized AuNPs for the high-sensitivity colorimetric detection of melamine in milk samples. Hu X, Chang K, Wang S, Sun X, Hu J, Jiang M. PLoS One; 2018 Apr 15; 13(8):e0201626. PubMed ID: 30071096 [Abstract] [Full Text] [Related]
12. Highly Sensitive Aptamer-Based Colorimetric Detection of Melamine in Raw Milk with Cysteamine-Stabilized Gold Nanoparticles. Zheng H, Li Y, Xu J, Bie J, Liu X, Guo J, Luo Y, Shen F, Sun C, Yu Y. J Nanosci Nanotechnol; 2017 Feb 15; 17(2):853-61. PubMed ID: 29668219 [Abstract] [Full Text] [Related]
13. A colorimetric aptasensor for sulfadimethoxine detection based on peroxidase-like activity of graphene/nickel@palladium hybrids. Wang A, Zhao H, Chen X, Tan B, Zhang Y, Quan X. Anal Biochem; 2017 May 15; 525():92-99. PubMed ID: 28283448 [Abstract] [Full Text] [Related]
14. A label-free hairpin aptamer probe for colorimetric detection of adenosine triphosphate based on the anti-aggregation of gold nanoparticles. Sang F, Zhang X, Liu J, Yin S, Zhang Z. Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun 15; 217():122-127. PubMed ID: 30928837 [Abstract] [Full Text] [Related]
15. Utilizing Ag-Au core-satellite structures for colorimetric and surface-enhanced Raman scattering dual-sensing of Cu (II). Guo Y, Li D, Zheng S, Xu N, Deng W. Biosens Bioelectron; 2020 Jul 01; 159():112192. PubMed ID: 32291247 [Abstract] [Full Text] [Related]
16. Simple and fast colorimetric detection of lipopolysaccharide based on aptamer and SYBR Green I mediated aggregation of gold nanoparticles. Jiang J, Huang B, Li N, An C, Sun C, Shen Y, Gooneratne R, Cui H, Zhan S, Wang Y. Int J Biol Macromol; 2022 Dec 31; 223(Pt A):231-239. PubMed ID: 36347371 [Abstract] [Full Text] [Related]
18. Dual sensing reporter system of assembled gold nanoparticles toward the sequential colorimetric detection of adenosine and Cr(III). Zhu R, Song J, Zhou Y, Lei P, Li Z, Li HW, Shuang S, Dong C. Talanta; 2019 Nov 01; 204():294-303. PubMed ID: 31357297 [Abstract] [Full Text] [Related]
19. Improving sensitivity of gold nanoparticle based fluorescence quenching and colorimetric aptasensor by using water resuspended gold nanoparticle. Liu J, Guan Z, Lv Z, Jiang X, Yang S, Chen A. Biosens Bioelectron; 2014 Feb 15; 52():265-70. PubMed ID: 24064475 [Abstract] [Full Text] [Related]
20. Ultrasensitive colorimetric detection of amoxicillin based on Tris-HCl-induced aggregation of gold nanoparticles. Nguyen DK, Jang CH. Anal Biochem; 2022 May 15; 645():114634. PubMed ID: 35271807 [Abstract] [Full Text] [Related] Page: [Next] [New Search]