These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


387 related items for PubMed ID: 36781783

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Isolation and Identification of Plasma Extracellular Vesicles Protein Biomarkers.
    Lihon MV, Hadisurya M, Wu X, Iliuk A, Tao WA.
    Methods Mol Biol; 2023; 2660():207-217. PubMed ID: 37191799
    [Abstract] [Full Text] [Related]

  • 5. High Throughput Isolation and Data Independent Acquisition Mass Spectrometry (DIA-MS) of Urinary Extracellular Vesicles to Improve Prostate Cancer Diagnosis.
    Zhang H, Zhang GY, Su WC, Chen YT, Liu YF, Wei D, Zhang YX, Tang QY, Liu YX, Wang SZ, Li WC, Wesselius A, Zeegers MP, Zhang ZY, Gu YH, Tao WA, Yu EY.
    Molecules; 2022 Nov 23; 27(23):. PubMed ID: 36500247
    [Abstract] [Full Text] [Related]

  • 6. Characterization of Cerebrospinal Fluid via Data-Independent Acquisition Mass Spectrometry.
    Barkovits K, Linden A, Galozzi S, Schilde L, Pacharra S, Mollenhauer B, Stoepel N, Steinbach S, May C, Uszkoreit J, Eisenacher M, Marcus K.
    J Proteome Res; 2018 Oct 05; 17(10):3418-3430. PubMed ID: 30207155
    [Abstract] [Full Text] [Related]

  • 7. High throughput and accurate serum proteome profiling by integrated sample preparation technology and single-run data independent mass spectrometry analysis.
    Lin L, Zheng J, Yu Q, Chen W, Xing J, Chen C, Tian R.
    J Proteomics; 2018 Mar 01; 174():9-16. PubMed ID: 29278786
    [Abstract] [Full Text] [Related]

  • 8. Size-exclusion chromatography combined with DIA-MS enables deep proteome profiling of extracellular vesicles from melanoma plasma and serum.
    Lattmann E, Räss L, Tognetti M, Gómez JMM, Lapaire V, Bruderer R, Reiter L, Feng Y, Steinmetz LM, Levesque MP.
    Cell Mol Life Sci; 2024 Feb 14; 81(1):90. PubMed ID: 38353833
    [Abstract] [Full Text] [Related]

  • 9. A Comprehensive Proteomic SWATH-MS Workflow for Profiling Blood Extracellular Vesicles: A New Avenue for Glioma Tumour Surveillance.
    Hallal S, Azimi A, Wei H, Ho N, Lee MYT, Sim HW, Sy J, Shivalingam B, Buckland ME, Alexander-Kaufman KL.
    Int J Mol Sci; 2020 Jul 03; 21(13):. PubMed ID: 32635403
    [Abstract] [Full Text] [Related]

  • 10. Rapid and in-depth proteomic profiling of small extracellular vesicles for ultralow samples.
    Cross J, Rai A, Fang H, Claridge B, Greening DW.
    Proteomics; 2024 Jun 03; 24(11):e2300211. PubMed ID: 37786918
    [Abstract] [Full Text] [Related]

  • 11. Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins.
    Karimi N, Cvjetkovic A, Jang SC, Crescitelli R, Hosseinpour Feizi MA, Nieuwland R, Lötvall J, Lässer C.
    Cell Mol Life Sci; 2018 Aug 03; 75(15):2873-2886. PubMed ID: 29441425
    [Abstract] [Full Text] [Related]

  • 12. Differential ultracentrifugation enables deep plasma proteomics through enrichment of extracellular vesicles.
    Kverneland AH, Østergaard O, Emdal KB, Svane IM, Olsen JV.
    Proteomics; 2023 Apr 03; 23(7-8):e2200039. PubMed ID: 36398564
    [Abstract] [Full Text] [Related]

  • 13. Identification of potential saliva and tear biomarkers in primary Sjögren's syndrome, utilising the extraction of extracellular vesicles and proteomics analysis.
    Aqrawi LA, Galtung HK, Vestad B, Øvstebø R, Thiede B, Rusthen S, Young A, Guerreiro EM, Utheim TP, Chen X, Utheim ØA, Palm Ø, Jensen JL.
    Arthritis Res Ther; 2017 Jan 25; 19(1):14. PubMed ID: 28122643
    [Abstract] [Full Text] [Related]

  • 14. Rapid Isolation of Extracellular Vesicles from Blood Plasma with Size-Exclusion Chromatography Followed by Mass Spectrometry-Based Proteomic Profiling.
    Kreimer S, Ivanov AR.
    Methods Mol Biol; 2017 Jan 25; 1660():295-302. PubMed ID: 28828666
    [Abstract] [Full Text] [Related]

  • 15. Targeted proteomics of plasma extracellular vesicles uncovers MUC1 as combinatorial biomarker for the early detection of high-grade serous ovarian cancer.
    Cooper TT, Dieters-Castator DZ, Liu J, Siegers GM, Pink D, Veliz L, Lewis JD, Lagugné-Labarthet F, Fu Y, Steed H, Lajoie GA, Postovit LM.
    J Ovarian Res; 2024 Jul 17; 17(1):149. PubMed ID: 39020428
    [Abstract] [Full Text] [Related]

  • 16. An Update on Isolation Methods for Proteomic Studies of Extracellular Vesicles in Biofluids.
    Li J, He X, Deng Y, Yang C.
    Molecules; 2019 Sep 27; 24(19):. PubMed ID: 31569778
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Mass spectrometry-based proteome profiling of extracellular vesicles and their roles in cancer biology.
    Bandu R, Oh JW, Kim KP.
    Exp Mol Med; 2019 Mar 15; 51(3):1-10. PubMed ID: 30872566
    [Abstract] [Full Text] [Related]

  • 19. Extracellular vesicle proteomes of two transmissible cancers of Tasmanian devils reveal tenascin-C as a serum-based differential diagnostic biomarker.
    Espejo C, Wilson R, Willms E, Ruiz-Aravena M, Pye RJ, Jones ME, Hill AF, Woods GM, Lyons AB.
    Cell Mol Life Sci; 2021 Dec 15; 78(23):7537-7555. PubMed ID: 34655299
    [Abstract] [Full Text] [Related]

  • 20. Depletion of abundant plasma proteins for extracellular vesicle proteome characterization: benefits and pitfalls.
    Reymond S, Gruaz L, Sanchez JC.
    Anal Bioanal Chem; 2023 Jul 15; 415(16):3177-3187. PubMed ID: 37069444
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.