These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
207 related items for PubMed ID: 36793005
1. Identification of the global diurnal rhythmic transcripts, transcription factors and time-of-day specific cis elements in Chenopodium quinoa. Wu Q, Bai X, Luo Y, Li L, Nie M, Liu C, Ye X, Zou L, Xiang D. BMC Plant Biol; 2023 Feb 16; 23(1):96. PubMed ID: 36793005 [Abstract] [Full Text] [Related]
2. Investigation into the underlying regulatory mechanisms shaping inflorescence architecture in Chenopodium quinoa. Wu Q, Bai X, Zhao W, Shi X, Xiang D, Wan Y, Wu X, Sun Y, Zhao J, Peng L, Zhao G. BMC Genomics; 2019 Aug 17; 20(1):658. PubMed ID: 31419932 [Abstract] [Full Text] [Related]
3. Global profiling of rice and poplar transcriptomes highlights key conserved circadian-controlled pathways and cis-regulatory modules. Filichkin SA, Breton G, Priest HD, Dharmawardhana P, Jaiswal P, Fox SE, Michael TP, Chory J, Kay SA, Mockler TC. PLoS One; 2011 Aug 17; 6(6):e16907. PubMed ID: 21694767 [Abstract] [Full Text] [Related]
4. Leaf and shoot apical meristem transcriptomes of quinoa (Chenopodium quinoa Willd.) in response to photoperiod and plant development. Maldonado-Taipe N, Rey E, Tester M, Jung C, Emrani N. Plant Cell Environ; 2024 Jun 17; 47(6):2027-2043. PubMed ID: 38391415 [Abstract] [Full Text] [Related]
5. Transcriptome profiling identifies transcription factors and key homologs involved in seed dormancy and germination regulation of Chenopodium quinoa. Wu Q, Bai X, Wu X, Xiang D, Wan Y, Luo Y, Shi X, Li Q, Zhao J, Qin P, Yang X, Zhao G. Plant Physiol Biochem; 2020 Jun 17; 151():443-456. PubMed ID: 32289638 [Abstract] [Full Text] [Related]
6. Haplotype variations of major flowering time genes in quinoa unveil their role in the adaptation to different environmental conditions. Patiranage DSR, Asare E, Maldonado-Taipe N, Rey E, Emrani N, Tester M, Jung C. Plant Cell Environ; 2021 Aug 17; 44(8):2565-2579. PubMed ID: 33878205 [Abstract] [Full Text] [Related]
7. Identification of the specific long-noncoding RNAs involved in night-break mediated flowering retardation in Chenopodium quinoa. Wu Q, Luo Y, Wu X, Bai X, Ye X, Liu C, Wan Y, Xiang D, Li Q, Zou L, Zhao G. BMC Genomics; 2021 Apr 19; 22(1):284. PubMed ID: 33874907 [Abstract] [Full Text] [Related]
8. Genome-Wide Identification and Characterization of SPL Family Genes in Chenopodium quinoa. Zhao H, Cao H, Zhang M, Deng S, Li T, Xing S. Genes (Basel); 2022 Aug 16; 13(8):. PubMed ID: 36011366 [Abstract] [Full Text] [Related]
10. From a repressilator-based circadian clock mechanism to an external coincidence model responsible for photoperiod and temperature control of plant architecture in Arabodopsis thaliana. Yamashino T. Biosci Biotechnol Biochem; 2013 Aug 16; 77(1):10-6. PubMed ID: 23291766 [Abstract] [Full Text] [Related]
12. Ontogenesis of photoperiodic entrainment of the molecular core clockwork in the rat suprachiasmatic nucleus. Kováciková Z, Sládek M, Laurinová K, Bendová Z, Illnerová H, Sumová A. Brain Res; 2005 Dec 07; 1064(1-2):83-9. PubMed ID: 16289486 [Abstract] [Full Text] [Related]
14. Identification of core genes associated with different phosphorus levels in quinoa seedlings by weighted gene co-expression network analysis. Zhang S, Liu J, Shi L, Wang Q, Zhang P, Wang H, Liu J, Li H, Li L, Li X, Huang L, Qin P. BMC Genomics; 2023 Jul 15; 24(1):399. PubMed ID: 37454047 [Abstract] [Full Text] [Related]
15. Circadian clockwork machinery in neural retina: evidence for the presence of functional clock components in photoreceptor-enriched chick retinal cell cultures. Chaurasia SS, Pozdeyev N, Haque R, Visser A, Ivanova TN, Iuvone PM. Mol Vis; 2006 Mar 30; 12():215-23. PubMed ID: 16604054 [Abstract] [Full Text] [Related]
17. Phytochrome-interacting factor 4 and 5 (PIF4 and PIF5) activate the homeobox ATHB2 and auxin-inducible IAA29 genes in the coincidence mechanism underlying photoperiodic control of plant growth of Arabidopsis thaliana. Kunihiro A, Yamashino T, Nakamichi N, Niwa Y, Nakanishi H, Mizuno T. Plant Cell Physiol; 2011 Aug 30; 52(8):1315-29. PubMed ID: 21666227 [Abstract] [Full Text] [Related]
18. OsPRR37 confers an expanded regulation of the diurnal rhythms of the transcriptome and photoperiodic flowering pathways in rice. Liu C, Qu X, Zhou Y, Song G, Abiri N, Xiao Y, Liang F, Jiang D, Hu Z, Yang D. Plant Cell Environ; 2018 Mar 30; 41(3):630-645. PubMed ID: 29314052 [Abstract] [Full Text] [Related]
19. Genome-wide identification, phylogenetic analysis, and expression profiles of trihelix transcription factor family genes in quinoa (Chenopodium quinoa Willd.) under abiotic stress conditions. Li K, Fan Y, Zhou G, Liu X, Chen S, Chang X, Wu W, Duan L, Yao M, Wang R, Wang Z, Yang M, Ding Y, Ren M, Fan Y, Zhang L. BMC Genomics; 2022 Jul 10; 23(1):499. PubMed ID: 35810309 [Abstract] [Full Text] [Related]
20. Circadian clock- and PIF4-controlled plant growth: a coincidence mechanism directly integrates a hormone signaling network into the photoperiodic control of plant architectures in Arabidopsis thaliana. Nomoto Y, Kubozono S, Yamashino T, Nakamichi N, Mizuno T. Plant Cell Physiol; 2012 Nov 10; 53(11):1950-64. PubMed ID: 23037003 [Abstract] [Full Text] [Related] Page: [Next] [New Search]