These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
265 related items for PubMed ID: 36799478
1. On the interdependence of ketone body oxidation, glycogen content, glycolysis and energy metabolism in the heart. Kadir AA, Stubbs BJ, Chong CR, Lee H, Cole M, Carr C, Hauton D, McCullagh J, Evans RD, Clarke K. J Physiol; 2023 Apr; 601(7):1207-1224. PubMed ID: 36799478 [Abstract] [Full Text] [Related]
5. Energy-linked regulation of glucose and pyruvate oxidation in isolated perfused rat heart. Role of pyruvate dehydrogenase. Hiltunen JK, Hassinen IE. Biochim Biophys Acta; 1976 Aug 13; 440(2):377-90. PubMed ID: 182244 [Abstract] [Full Text] [Related]
6. Increased ketone body oxidation provides additional energy for the failing heart without improving cardiac efficiency. Ho KL, Zhang L, Wagg C, Al Batran R, Gopal K, Levasseur J, Leone T, Dyck JRB, Ussher JR, Muoio DM, Kelly DP, Lopaschuk GD. Cardiovasc Res; 2019 Sep 01; 115(11):1606-1616. PubMed ID: 30778524 [Abstract] [Full Text] [Related]
8. Glycolytic pathway, redox state of NAD(P)-couples and energy metabolism in lens in galactose-fed rats: effect of an aldose reductase inhibitor. Obrosova I, Faller A, Burgan J, Ostrow E, Williamson JR. Curr Eye Res; 1997 Jan 01; 16(1):34-43. PubMed ID: 9043821 [Abstract] [Full Text] [Related]
9. Myocardial triglyceride turnover and contribution to energy substrate utilization in isolated working rat hearts. Saddik M, Lopaschuk GD. J Biol Chem; 1991 May 05; 266(13):8162-70. PubMed ID: 1902472 [Abstract] [Full Text] [Related]
10. Calcium regulation of glycolysis, glucose oxidation, and fatty acid oxidation in the aerobic and ischemic heart. Schönekess BO, Brindley PG, Lopaschuk GD. Can J Physiol Pharmacol; 1995 Nov 05; 73(11):1632-40. PubMed ID: 8789418 [Abstract] [Full Text] [Related]
11. Effect of dietary taurine supplementation on GSH and NAD(P)-redox status, lipid peroxidation, and energy metabolism in diabetic precataractous lens. Obrosova IG, Stevens MJ. Invest Ophthalmol Vis Sci; 1999 Mar 05; 40(3):680-8. PubMed ID: 10067971 [Abstract] [Full Text] [Related]
12. Influence of vanadate on glycolysis, intracellular sodium, and pH in perfused rat hearts. Geraldes CF, Castro MM, Sherry AD, Ramasamy R. Mol Cell Biochem; 1997 May 05; 170(1-2):53-63. PubMed ID: 9144318 [Abstract] [Full Text] [Related]
14. Glucose requirement for postischemic recovery of perfused working heart. Mallet RT, Hartman DA, Bünger R. Eur J Biochem; 1990 Mar 10; 188(2):481-93. PubMed ID: 2318214 [Abstract] [Full Text] [Related]
15. Effects of increased heart work on glycolysis and adenine nucleotides in the perfused heart of normal and diabetic rats. Opie LH, Mansford KR, Owen P. Biochem J; 1971 Sep 10; 124(3):475-90. PubMed ID: 5135234 [Abstract] [Full Text] [Related]
17. Contribution of glycogen and exogenous glucose to glucose metabolism during ischemia in the hypertrophied rat heart. Schönekess BO, Allard MF, Henning SL, Wambolt RB, Lopaschuk GD. Circ Res; 1997 Oct 15; 81(4):540-9. PubMed ID: 9314835 [Abstract] [Full Text] [Related]
18. Effects of TA-3090, a new calcium channel blocker, on myocardial substrate utilization in ischemic and nonischemic isolated working fatty acid-perfused rat hearts. Davies NJ, McVeigh JJ, Lopaschuk GD. Circ Res; 1991 Mar 15; 68(3):807-17. PubMed ID: 1742868 [Abstract] [Full Text] [Related]