These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


155 related items for PubMed ID: 3680626

  • 1. Factors guiding optic fibers in developing Xenopus retina.
    Bork T, Schabtach E, Grant P.
    J Comp Neurol; 1987 Oct 08; 264(2):147-58. PubMed ID: 3680626
    [Abstract] [Full Text] [Related]

  • 2. The early development of the optic nerve and chiasm in embryonic rat.
    Horsburgh GM, Sefton AJ.
    J Comp Neurol; 1986 Jan 22; 243(4):547-60. PubMed ID: 3950086
    [Abstract] [Full Text] [Related]

  • 3. Abnormal pigmentation and unusual morphogenesis of the optic stalk may be correlated with retinal axon misguidance in embryonic Siamese cats.
    Webster MJ, Shatz CJ, Kliot M, Silver J.
    J Comp Neurol; 1988 Mar 22; 269(4):592-611. PubMed ID: 3372729
    [Abstract] [Full Text] [Related]

  • 4. Axonal guidance during development of the optic nerve: the role of pigmented epithelia and other extrinsic factors.
    Silver J, Sapiro J.
    J Comp Neurol; 1981 Nov 10; 202(4):521-38. PubMed ID: 7298913
    [Abstract] [Full Text] [Related]

  • 5. Ontogeny of the retina and optic nerve in Xenopus laevis. II. Ontogeny of the optic fiber pattern in the retina.
    Grant P, Rubin E.
    J Comp Neurol; 1980 Feb 15; 189(4):671-98. PubMed ID: 7381045
    [Abstract] [Full Text] [Related]

  • 6. Aberrant optic axons in the retinal pigment epithelium during chick and quail visual pathway development.
    Halfter W.
    J Comp Neurol; 1988 Feb 08; 268(2):161-70. PubMed ID: 3360983
    [Abstract] [Full Text] [Related]

  • 7. Position of growth cones within the retinal nerve fibre layer of fetal ferrets.
    FitzGibbon T, Reese BE.
    J Comp Neurol; 1992 Sep 08; 323(2):153-66. PubMed ID: 1401254
    [Abstract] [Full Text] [Related]

  • 8. Development of the optic nerve in Xenopus laevis. I. Early development and organization.
    Cima C, Grant P.
    J Embryol Exp Morphol; 1982 Dec 08; 72():225-49. PubMed ID: 7183741
    [Abstract] [Full Text] [Related]

  • 9. Growth cones of developing retinal cells in vivo, on culture surfaces, and in collagen matrices.
    Harris WA, Holt CE, Smith TA, Gallenson N.
    J Neurosci Res; 1985 Dec 08; 13(1-2):101-22. PubMed ID: 2983077
    [Abstract] [Full Text] [Related]

  • 10. Tenascin in the developing chick visual system: distribution and potential role as a modulator of retinal axon growth.
    Perez RG, Halfter W.
    Dev Biol; 1993 Mar 08; 156(1):278-92. PubMed ID: 7680630
    [Abstract] [Full Text] [Related]

  • 11. The organization of the fibers in the optic nerve of normal and tectum-less Rana pipiens.
    Reh TA, Pitts E, Constantine-Paton M.
    J Comp Neurol; 1983 Aug 10; 218(3):282-96. PubMed ID: 6604077
    [Abstract] [Full Text] [Related]

  • 12. The guidance of optic axons in the developing and adult mouse retina.
    Goldberg S, Frank B.
    Anat Rec; 1979 Apr 10; 193(4):763-74. PubMed ID: 426305
    [Abstract] [Full Text] [Related]

  • 13. Chiasmatic course of temporal retinal axons in the developing ferret.
    Baker GE, Reese BE.
    J Comp Neurol; 1993 Apr 01; 330(1):95-104. PubMed ID: 8468406
    [Abstract] [Full Text] [Related]

  • 14. Fate of uncrossed retinal projections following early or late prenatal monocular enucleation in the mouse.
    Godement P, Salaün J, Métin C.
    J Comp Neurol; 1987 Jan 01; 255(1):97-109. PubMed ID: 3819012
    [Abstract] [Full Text] [Related]

  • 15. The course of axons of retinal ganglion cells within the optic nerve and tract of the chick (Gallus gallus).
    Ehrlich D, Mark R.
    J Comp Neurol; 1984 Mar 10; 223(4):583-91. PubMed ID: 6715572
    [Abstract] [Full Text] [Related]

  • 16. Tenascin protein and mRNA in the avian visual system: distribution and potential contribution to retinotectal development.
    Perez RG, Halfter W.
    Perspect Dev Neurobiol; 1994 Mar 10; 2(1):75-87. PubMed ID: 7530146
    [Abstract] [Full Text] [Related]

  • 17. Homing behaviour of axons in the embryonic vertebrate brain.
    Harris WA.
    Nature; 1994 Mar 10; 320(6059):266-9. PubMed ID: 3960107
    [Abstract] [Full Text] [Related]

  • 18. Development of primary visual projections occurs entirely postnatally in the fat-tailed dunnart, a marsupial mouse, Sminthopsis crassicaudata.
    Dunlop SA, Tee LB, Lund RD, Beazley LD.
    J Comp Neurol; 1997 Jul 21; 384(1):26-40. PubMed ID: 9214538
    [Abstract] [Full Text] [Related]

  • 19. Regional specialization in retinal ganglion cell projection to optic tectum of Dipsosaurus dorsalis (Iguanidae).
    Peterson EH.
    J Comp Neurol; 1981 Feb 20; 196(2):225-52. PubMed ID: 7217356
    [Abstract] [Full Text] [Related]

  • 20. Perturbation of the developing Xenopus retinotectal projection following injections of antibodies against beta1 integrin receptors and N-cadherin.
    Stone KE, Sakaguchi DS.
    Dev Biol; 1996 Nov 25; 180(1):297-310. PubMed ID: 8948592
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.