These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
198 related items for PubMed ID: 36812348
1. Holey Ti3C2 MXene-Derived Anode Enables Boosted Kinetics in Lithium-Ion Capacitors. Zhou HY, Lin LW, Sui ZY, Wang HY, Han BH. ACS Appl Mater Interfaces; 2023 Mar 08; 15(9):12161-12170. PubMed ID: 36812348 [Abstract] [Full Text] [Related]
2. Engineering chemical-bonded Ti3C2 MXene@carbon composite films with 3D transportation channels for promoting lithium-ion storage in hybrid capacitors. Feng M, Wang W, Hu Z, Fan C, Zhao X, Wang P, Li H, Yang L, Wang X, Liu Z. Sci China Mater; 2023 Mar 08; 66(3):944-954. PubMed ID: 36937247 [Abstract] [Full Text] [Related]
3. Hierarchical architecture of two-dimensional Ti3C2 nanosheets@Metal-Organic framework derivatives as anode for hybrid li-ion capacitors. Wu W, Zhao C, Liu H, Liu T, Wang L, Zhu J. J Colloid Interface Sci; 2022 Oct 08; 623():216-225. PubMed ID: 35576651 [Abstract] [Full Text] [Related]
4. Pillared Structure Design of MXene with Ultralarge Interlayer Spacing for High-Performance Lithium-Ion Capacitors. Luo J, Zhang W, Yuan H, Jin C, Zhang L, Huang H, Liang C, Xia Y, Zhang J, Gan Y, Tao X. ACS Nano; 2017 Mar 28; 11(3):2459-2469. PubMed ID: 27998055 [Abstract] [Full Text] [Related]
5. Carbon-reinforced Ni3S2/Ti3C2Tx MXene composite as an anode for superior-performance lithium-ion capacitors. Deng XG, Fan LQ, Fu XY, Tang T, Lin SH, Chen L, Yu FD, Huang YF, Huang ML, Wu JH. J Colloid Interface Sci; 2024 May 28; 661():237-248. PubMed ID: 38301462 [Abstract] [Full Text] [Related]
6. Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors. Yu P, Cao G, Yi S, Zhang X, Li C, Sun X, Wang K, Ma Y. Nanoscale; 2018 Mar 29; 10(13):5906-5913. PubMed ID: 29537043 [Abstract] [Full Text] [Related]
7. Na0.76V6O15/Activated Carbon Hybrid Cathode for High-Performance Lithium-Ion Capacitors. Lu R, Ren X, Wang C, Zhan C, Nan D, Lv R, Shen W, Kang F, Huang ZH. Materials (Basel); 2020 Dec 30; 14(1):. PubMed ID: 33396727 [Abstract] [Full Text] [Related]
8. Oxidized-Polydopamine-Coated Graphene Anodes and N,P Codoped Porous Foam Structure Activated Carbon Cathodes for High-Energy-Density Lithium-Ion Capacitors. Xiao Y, He D, Peng W, Chen S, Liu J, Chen H, Xin S, Bai Y. ACS Appl Mater Interfaces; 2021 Mar 03; 13(8):10336-10348. PubMed ID: 33599127 [Abstract] [Full Text] [Related]
9. Robust and Fast Lithium Storage Enabled by Polypyrrole-Coated Nitrogen and Phosphorus Co-Doped Hollow Carbon Nanospheres for Lithium-Ion Capacitors. Zhang M, Zheng X, Mu J, Liu P, Yuan W, Li S, Wang X, Fang H, Liu H, Xing T, Hu H, Wu M. Front Chem; 2021 Mar 03; 9():760473. PubMed ID: 34631673 [Abstract] [Full Text] [Related]
10. Nitrogen-Doped Porous Carbon Derived from Coal for High-Performance Dual-Carbon Lithium-Ion Capacitors. Jiang J, Shen Q, Chen Z, Wang S. Nanomaterials (Basel); 2023 Sep 09; 13(18):. PubMed ID: 37764554 [Abstract] [Full Text] [Related]
11. Cationic intermediates assisted self-assembly two-dimensional Ti3C2Tx/rGO hybrid nanoflakes for advanced lithium-ion capacitors. Yi S, Wang L, Zhang X, Li C, Liu W, Wang K, Sun X, Xu Y, Yang Z, Cao Y, Sun J, Ma Y. Sci Bull (Beijing); 2021 May 15; 66(9):914-924. PubMed ID: 36654240 [Abstract] [Full Text] [Related]
12. Hierarchical architecture of ZIF-8@ZIF-67-Derived N-doped carbon nanotube hollow polyhedron supported on 2D Ti3C2Tx nanosheets targeting enhanced lithium-ion capacitors. Wu W, Diwu J, Guo J, Fang Y, Wang L, Li C, Zhang B, Zhu J. J Colloid Interface Sci; 2024 Jun 15; 663():609-623. PubMed ID: 38430831 [Abstract] [Full Text] [Related]
13. Modification of LiMn2O4 Cathodes to Boost Kinetics Match via rGO for High-Performance Rocking-Chair Lithium-Ion Capacitors. Li H, Chen N, Liu T, Wang R, Gao X, Guo L, Chen H, Shi R, Gao W, Bai Y. ACS Appl Mater Interfaces; 2024 Aug 28; 16(34):44697-44705. PubMed ID: 39152898 [Abstract] [Full Text] [Related]
14. Fluorine-Enriched Graphdiyne as an Efficient Anode in Lithium-Ion Capacitors. Shen X, He J, Wang K, Li X, Wang X, Yang Z, Wang N, Zhang Y, Huang C. ChemSusChem; 2019 Apr 05; 12(7):1342-1348. PubMed ID: 30710428 [Abstract] [Full Text] [Related]
15. Facile Synthesis of Graphene with Fast Ion/Electron Channels for High-Performance Symmetric Lithium-Ion Capacitors. Xiao Y, Liu J, He D, Chen S, Peng W, Hu X, Liu T, Zhu Z, Bai Y. ACS Appl Mater Interfaces; 2021 Aug 18; 13(32):38266-38277. PubMed ID: 34374273 [Abstract] [Full Text] [Related]
16. High Performance Lithium-Ion Hybrid Capacitors Employing Fe3O4-Graphene Composite Anode and Activated Carbon Cathode. Zhang S, Li C, Zhang X, Sun X, Wang K, Ma Y. ACS Appl Mater Interfaces; 2017 May 24; 9(20):17136-17144. PubMed ID: 28474525 [Abstract] [Full Text] [Related]
17. S, O dual-doped porous carbon derived from activation of waste papers as electrodes for high performance lithium ion capacitors. Hao J, Bai J, Wang X, Wang Y, Guo Q, Yang Y, Zhao J, Chi C, Li Y. Nanoscale Adv; 2021 Feb 10; 3(3):738-746. PubMed ID: 36133845 [Abstract] [Full Text] [Related]
18. A high performance lithium ion capacitor achieved by the integration of a Sn-C anode and a biomass-derived microporous activated carbon cathode. Sun F, Gao J, Zhu Y, Pi X, Wang L, Liu X, Qin Y. Sci Rep; 2017 Feb 03; 7():40990. PubMed ID: 28155853 [Abstract] [Full Text] [Related]
19. MnCO3 Cuboids from Spent LIBs: A New Age Displacement Anode to Build High-Performance Li-Ion Capacitors. Natarajan S, Akshay M, Aravindan V. Small; 2023 Apr 03; 19(17):e2206226. PubMed ID: 36693780 [Abstract] [Full Text] [Related]
20. A Novel Strategy of In Situ Trimerization of Cyano Groups Between the Ti3C2Tx (MXene) Interlayers for High-Energy and High-Power Sodium-Ion Capacitors. Liu S, Hu F, Shao W, Zhang W, Zhang T, Song C, Yao M, Huang H, Jian X. Nanomicro Lett; 2020 Jun 25; 12(1):135. PubMed ID: 34138139 [Abstract] [Full Text] [Related] Page: [Next] [New Search]