These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


208 related items for PubMed ID: 3681732

  • 1. Heterogeneity of amino acid transport in horse erythrocytes: a detailed kinetic analysis of inherited transport variation.
    Fincham DA, Mason DK, Paterson JY, Young JD.
    J Physiol; 1987 Aug; 389():385-409. PubMed ID: 3681732
    [Abstract] [Full Text] [Related]

  • 2. Dibasic amino acid interactions with Na+-independent transport system asc in horse erythrocytes. Kinetic evidence of functional and structural homology with Na+-dependent system ASC.
    Fincham DA, Mason DK, Young JD.
    Biochim Biophys Acta; 1988 Jan 13; 937(1):184-94. PubMed ID: 3334844
    [Abstract] [Full Text] [Related]

  • 3. Characterization of a novel variant of amino acid transport system asc in erythrocytes from Przewalski's horse (Equus przewalskii).
    Fincham DA, Ellory JC, Young JD.
    Can J Physiol Pharmacol; 1992 Aug 13; 70(8):1117-27. PubMed ID: 1473044
    [Abstract] [Full Text] [Related]

  • 4. Characterization of a novel Na+-independent amino acid transporter in horse erythrocytes.
    Fincham DA, Mason DK, Young JD.
    Biochem J; 1985 Apr 01; 227(1):13-20. PubMed ID: 3994678
    [Abstract] [Full Text] [Related]

  • 5. Topographical similarities between harmaline inhibition sites on Na+-dependent amino acid transport system ASC in human erythrocytes and Na+-independent system asc in horse erythrocytes.
    Young JD, Mason DK, Fincham DA.
    J Biol Chem; 1988 Jan 05; 263(1):140-3. PubMed ID: 3121605
    [Abstract] [Full Text] [Related]

  • 6. Red-cell amino acid transport. Evidence for the presence of system ASC in mature human red blood cells.
    Young JD, Wolowyk MW, Jones SM, Ellory JC.
    Biochem J; 1983 Nov 15; 216(2):349-57. PubMed ID: 6661202
    [Abstract] [Full Text] [Related]

  • 7. Breed and species comparison of amino acid transport variation in equine erythrocytes.
    Fincham DA, Young JD, Mason DK, Collins EA, Snow DH.
    Res Vet Sci; 1985 May 15; 38(3):346-51. PubMed ID: 4012037
    [Abstract] [Full Text] [Related]

  • 8. Amino acid transport in human and in sheep erythrocytes.
    Young JD, Jones SE, Ellory JC.
    Proc R Soc Lond B Biol Sci; 1980 Sep 26; 209(1176):355-75. PubMed ID: 6109287
    [Abstract] [Full Text] [Related]

  • 9. Cation and harmaline interactions with Na(+)-independent dibasic amino acid transport system y+ in human erythrocytes and in erythrocytes from a primitive vertebrate the pacific hagfish (Eptatretus stouti).
    Young JD, Fincham DA, Harvey CM.
    Biochim Biophys Acta; 1991 Nov 18; 1070(1):111-8. PubMed ID: 1751517
    [Abstract] [Full Text] [Related]

  • 10. Basolateral amino acid transport systems in the perfused exocrine pancreas: sodium-dependency and kinetic interactions between influx and efflux mechanisms.
    Mann GE, Peran S.
    Biochim Biophys Acta; 1986 Jun 26; 858(2):263-74. PubMed ID: 3087423
    [Abstract] [Full Text] [Related]

  • 11. Substrate specificity of amino acid transport in sheep erythrocytes.
    Young JD, Ellory JC.
    Biochem J; 1977 Jan 15; 162(1):33-8. PubMed ID: 849280
    [Abstract] [Full Text] [Related]

  • 12. Na-independent and Na-dependent transport of neutral amino acids in the human red blood cell.
    Rosenberg R.
    Acta Physiol Scand; 1982 Dec 15; 116(4):321-30. PubMed ID: 7170995
    [Abstract] [Full Text] [Related]

  • 13. Na(+)-independent L-alanine uptake by trout cells. Evidence for the existence of at least two functionally different acs systems.
    Albi JL, Canals P, Gallardo MA, Sánchez J.
    J Membr Biol; 1994 Jun 15; 140(3):189-96. PubMed ID: 7932653
    [Abstract] [Full Text] [Related]

  • 14. Effects of temperature on the transport of nucleosides in guinea pig erythrocytes.
    Jarvis SM, Martin BW.
    Can J Physiol Pharmacol; 1986 Feb 15; 64(2):193-8. PubMed ID: 3697835
    [Abstract] [Full Text] [Related]

  • 15. Discrimination of Na+-independent transport systems L, T, and asc in erythrocytes. Na+ independence of the latter a consequence of cell maturation?
    Vadgama JV, Christensen HN.
    J Biol Chem; 1985 Mar 10; 260(5):2912-21. PubMed ID: 3919011
    [Abstract] [Full Text] [Related]

  • 16. Genetic control of amino acid transport in sheep erythrocytes.
    Young JD, Tucker EM, Kilgour L.
    Biochem Genet; 1982 Aug 10; 20(7-8):723-31. PubMed ID: 7138497
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Volume-sensitive taurine transport in fish erythrocytes.
    Fincham DA, Wolowyk MW, Young JD.
    J Membr Biol; 1987 Aug 10; 96(1):45-56. PubMed ID: 3585985
    [Abstract] [Full Text] [Related]

  • 19. Reconstitution studies of amino acid transport system L in rat erythrocytes.
    Yao SY, George R, Young JD.
    Biochem J; 1993 Jun 15; 292 ( Pt 3)(Pt 3):655-60. PubMed ID: 8317996
    [Abstract] [Full Text] [Related]

  • 20. Discrimination of parallel neutral amino acid transport systems in the basolateral membrane of cat salivary epithelium.
    Mann GE, Yudilevich DL.
    J Physiol; 1984 Feb 15; 347():111-27. PubMed ID: 6707951
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.