These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
136 related items for PubMed ID: 36823930
1. Atmospheric correction algorithm based on the interpolation of ultraviolet and shortwave infrared bands. Bai R, He X, Bai Y, Gong F, Zhu Q, Wang D, Li T. Opt Express; 2023 Feb 13; 31(4):6805-6826. PubMed ID: 36823930 [Abstract] [Full Text] [Related]
2. Enhanced POLYMER atmospheric correction algorithm for water-leaving radiance retrievals from hyperspectral/multispectral remote sensing data in inland and coastal waters. Karthick M, Shanmugam P, He X. Opt Express; 2024 Feb 26; 32(5):7659-7681. PubMed ID: 38439443 [Abstract] [Full Text] [Related]
3. Atmospheric correction of satellite ocean color imagery using the ultraviolet wavelength for highly turbid waters. He X, Bai Y, Pan D, Tang J, Wang D. Opt Express; 2012 Aug 27; 20(18):20754-70. PubMed ID: 23037125 [Abstract] [Full Text] [Related]
4. Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations. Wang M. Appl Opt; 2007 Mar 20; 46(9):1535-47. PubMed ID: 17334446 [Abstract] [Full Text] [Related]
5. Atmospheric Correction of Satellite Ocean-Color Imagery During the PACE Era. Frouin RJ, Franz BA, Ibrahim A, Knobelspiesse K, Ahmad Z, Cairns B, Chowdhary J, Dierssen HM, Tan J, Dubovik O, Huang X, Davis AB, Kalashnikova O, Thompson DR, Remer LA, Boss E, Coddington O, Deschamps PY, Gao BC, Gross L, Hasekamp O, Omar A, Pelletier B, Ramon D, Steinmetz F, Zhai PW. Front Earth Sci (Lausanne); 2019 Mar 20; 7():. PubMed ID: 32440515 [Abstract] [Full Text] [Related]
6. Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western Pacific region. Wang M, Shi W, Jiang L. Opt Express; 2012 Jan 16; 20(2):741-53. PubMed ID: 22274419 [Abstract] [Full Text] [Related]
7. Revisiting short-wave-infrared (SWIR) bands for atmospheric correction in coastal waters. Pahlevan N, Roger JC, Ahmad Z. Opt Express; 2017 Mar 20; 25(6):6015-6035. PubMed ID: 28380959 [Abstract] [Full Text] [Related]
8. UV-NIR approach with non-zero water-leaving radiance approximation for atmospheric correction of satellite imagery in inland and coastal zones. Singh RK, Shanmugam P, He X, Schroeder T. Opt Express; 2019 Aug 05; 27(16):A1118-A1145. PubMed ID: 31510495 [Abstract] [Full Text] [Related]
9. NIR- and SWIR-based on-orbit vicarious calibrations for satellite ocean color sensors. Wang M, Shi W, Jiang L, Voss K. Opt Express; 2016 Sep 05; 24(18):20437-53. PubMed ID: 27607649 [Abstract] [Full Text] [Related]
10. The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing. Wang M, Shi W. Opt Express; 2007 Nov 26; 15(24):15722-33. PubMed ID: 19550856 [Abstract] [Full Text] [Related]
11. Improved near-infrared ocean reflectance correction algorithm for satellite ocean color data processing. Jiang L, Wang M. Opt Express; 2014 Sep 08; 22(18):21657-78. PubMed ID: 25321543 [Abstract] [Full Text] [Related]
12. Sensor performance requirements for atmospheric correction of satellite ocean color remote sensing. Wang M, Gordon HR. Opt Express; 2018 Mar 19; 26(6):7390-7403. PubMed ID: 29609295 [Abstract] [Full Text] [Related]
13. Simple aerosol correction technique based on the spectral relationships of the aerosol multiple-scattering reflectances for atmospheric correction over the oceans. Ahn JH, Park YJ, Kim W, Lee B. Opt Express; 2016 Dec 26; 24(26):29659-29669. PubMed ID: 28059350 [Abstract] [Full Text] [Related]
14. Modification of 6SV to remove skylight reflected at the air-water interface: Application to atmospheric correction of Landsat 8 OLI imagery in inland waters. Lu Z, Li J, Shen Q, Zhang B, Zhang H, Zhang F, Wang S. PLoS One; 2018 Dec 26; 13(8):e0202883. PubMed ID: 30142203 [Abstract] [Full Text] [Related]
15. Improved atmospheric correction algorithm for Landsat 8-OLI data in turbid waters: a case study for the Lake Taihu, China. Wang D, Ronghua M, Xue K, Li J. Opt Express; 2019 Sep 30; 27(20):A1400-A1418. PubMed ID: 31684494 [Abstract] [Full Text] [Related]
16. Atmospheric correction of HJ-1 CCD imagery over turbid lake waters. Zhang M, Tang J, Dong Q, Duan H, Shen Q. Opt Express; 2014 Apr 07; 22(7):7906-24. PubMed ID: 24718166 [Abstract] [Full Text] [Related]
17. Optimal estimation framework for ocean color atmospheric correction and pixel-level uncertainty quantification. Ibrahim A, Franz BA, Sayer AM, Knobelspiesse K, Zhang M, Bailey SW, McKinna LIW, Gao M, Werdell PJ. Appl Opt; 2022 Aug 01; 61(22):6453-6475. PubMed ID: 36255869 [Abstract] [Full Text] [Related]
18. Improving atmospheric correction for highly productive coastal waters using the short wave infrared retrieval algorithm with water-leaving reflectance constraints at 412 nm. Oo M, Vargas M, Gilerson A, Gross B, Moshary F, Ahmed S. Appl Opt; 2008 Jul 20; 47(21):3846-59. PubMed ID: 18641754 [Abstract] [Full Text] [Related]
19. A fast and accurate radiative transfer model for aerosol remote sensing. Mei L, Rozanov V, Burrows JP. J Quant Spectrosc Radiat Transf; 2020 Nov 20; 256():107270. PubMed ID: 32868955 [Abstract] [Full Text] [Related]
20. Characteristics of water leaving reflectance at ultraviolet wavelengths: radiative transfer simulations. Bai R, He X, Bai Y, Li T, Zhu Q, Gong F. Opt Express; 2020 Sep 28; 28(20):29714-29729. PubMed ID: 33114864 [Abstract] [Full Text] [Related] Page: [Next] [New Search]