These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


34 related items for PubMed ID: 3683451

  • 1. Rods in the terminal cisternae of skeletal muscle.
    Dulhunty AF.
    Muscle Nerve; 1987; 10(9):783-9. PubMed ID: 3683451
    [Abstract] [Full Text] [Related]

  • 2. A freeze-fracture study of normal and dystrophic C57BL mouse muscle.
    Dulhunty A, Valois A.
    Muscle Nerve; 1982; 5(6):425-33. PubMed ID: 7133037
    [Abstract] [Full Text] [Related]

  • 3. Indentations in the terminal cisternae of amphibian and mammalian skeletal muscle fibers.
    Dulhunty A, Valois A.
    J Ultrastruct Res; 1983 Jul; 84(1):34-49. PubMed ID: 6411932
    [Abstract] [Full Text] [Related]

  • 4. Feet, bridges, and pillars in triad junctions of mammalian skeletal muscle: their possible relationship to calcium buffers in terminal cisternae and T-tubules and to excitation-contraction coupling.
    Dulhunty AF.
    J Membr Biol; 1989 Jul; 109(1):73-83. PubMed ID: 2769737
    [Abstract] [Full Text] [Related]

  • 5. Indentations in the terminal cisternae of slow- and fast-twitch muscle fibers from normal and paraplegic rats.
    Dulhunty A, Gage P, Valois A.
    J Ultrastruct Res; 1983 Jul; 84(1):50-9. PubMed ID: 6887324
    [Abstract] [Full Text] [Related]

  • 6. Upper motor neurone modulation of the structure of the terminal cisternae in rat skeletal muscle fibres.
    Dulhunty AF, Gage PW, Valois AA.
    Neurosci Lett; 1981 Dec 23; 27(3):277-83. PubMed ID: 6276823
    [Abstract] [Full Text] [Related]

  • 7. Potential targets for skeletal muscle impairment by hypogravity: basic characterization of resting ionic conductances and mechanical threshold of rat fast- and slow-twitch muscle fibers.
    De Luca A, Liantonio A, Pierno S, Desaphy JF, Leoty C, Conte Camerino D.
    J Gravit Physiol; 1998 Jul 23; 5(1):P75-6. PubMed ID: 11542372
    [Abstract] [Full Text] [Related]

  • 8. A comparative study of the membrane structure in different types of muscle fibers in the frog.
    Verma V.
    Eur J Cell Biol; 1984 Sep 23; 35(1):122-8. PubMed ID: 6333340
    [Abstract] [Full Text] [Related]

  • 9. Comparison of excitability parameters and sodium channel behavior of fast- and slow-twitch rat skeletal muscles for the study of the effects of hindlimb suspension, a model of hypogravity.
    Desaphy JF, Pierno S, Liantonio A, De Luca A, Leoty C, Conte Camerino D.
    J Gravit Physiol; 1998 Jul 23; 5(1):P77-8. PubMed ID: 11542373
    [Abstract] [Full Text] [Related]

  • 10. Contraction time, histochemical type, and terminal cisternae volume of rat motor units.
    Kugelberg E, Thornell LE.
    Muscle Nerve; 1983 Feb 23; 6(2):149-53. PubMed ID: 6222255
    [Abstract] [Full Text] [Related]

  • 11. Excitation-contraction uncoupling and muscular degeneration in mice lacking functional skeletal muscle ryanodine-receptor gene.
    Takeshima H, Iino M, Takekura H, Nishi M, Kuno J, Minowa O, Takano H, Noda T.
    Nature; 1994 Jun 16; 369(6481):556-9. PubMed ID: 7515481
    [Abstract] [Full Text] [Related]

  • 12. Deficiency of triad junction and contraction in mutant skeletal muscle lacking junctophilin type 1.
    Ito K, Komazaki S, Sasamoto K, Yoshida M, Nishi M, Kitamura K, Takeshima H.
    J Cell Biol; 2001 Sep 03; 154(5):1059-67. PubMed ID: 11535622
    [Abstract] [Full Text] [Related]

  • 13. Structural alterations in cardiac calcium release units resulting from overexpression of junctin.
    Zhang L, Franzini-Armstrong C, Ramesh V, Jones LR.
    J Mol Cell Cardiol; 2001 Feb 03; 33(2):233-47. PubMed ID: 11162129
    [Abstract] [Full Text] [Related]

  • 14. Muscle mechanics: adaptations with exercise-training.
    Fitts RH, Widrick JJ.
    Exerc Sport Sci Rev; 1996 Feb 03; 24():427-73. PubMed ID: 8744258
    [Abstract] [Full Text] [Related]

  • 15. Matching of sarcoplasmic reticulum and contractile properties in rat fast- and slow-twitch muscle fibres.
    Trinh HH, Lamb GD.
    Clin Exp Pharmacol Physiol; 2006 Jul 03; 33(7):591-600. PubMed ID: 16789925
    [Abstract] [Full Text] [Related]

  • 16. Seven skeletal muscles rich in slow muscle fibers may function to sustain neutral position in the rodent hindlimb.
    Hitomi Y, Kizaki T, Watanabe S, Matsumura G, Fujioka Y, Haga S, Izawa T, Taniguchi N, Ohno H.
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Jan 03; 140(1):45-50. PubMed ID: 15621508
    [Abstract] [Full Text] [Related]

  • 17. The dystrophic murine skeletal muscle cell plasma membrane is structurally intact but "leaky" to creatine phosphokinase. A freeze-fracture analysis.
    Shivers RR, Atkinson BG.
    Am J Pathol; 1984 Sep 03; 116(3):482-96. PubMed ID: 6476081
    [Abstract] [Full Text] [Related]

  • 18. Sarcoplasmic reticulum function in slow- and fast-twitch skeletal muscles from mdx mice.
    Divet A, Huchet-Cadiou C.
    Pflugers Arch; 2002 Aug 03; 444(5):634-43. PubMed ID: 12194017
    [Abstract] [Full Text] [Related]

  • 19. Chronic administration of taurine to aged rats improves the electrical and contractile properties of skeletal muscle fibers.
    Pierno S, De Luca A, Camerino C, Huxtable RJ, Camerino DC.
    J Pharmacol Exp Ther; 1998 Sep 03; 286(3):1183-90. PubMed ID: 9732377
    [Abstract] [Full Text] [Related]

  • 20. Na+ currents near and away from endplates on human fast and slow twitch muscle fibers.
    Ruff RL, Whittlesey D.
    Muscle Nerve; 1993 Sep 03; 16(9):922-9. PubMed ID: 8355723
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 2.