These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
303 related items for PubMed ID: 36867056
1. Plasmonic Coupling of Au Nanoclusters on a Flexible MXene/Graphene Oxide Fiber for Ultrasensitive SERS Sensing. Liu X, Dang A, Li T, Sun Y, Lee TC, Deng W, Wu S, Zada A, Zhao T, Li H. ACS Sens; 2023 Mar 24; 8(3):1287-1298. PubMed ID: 36867056 [Abstract] [Full Text] [Related]
2. Triple-enhanced Raman scattering sensors from flexible MXene/Au nanocubes platform via attenuating the coffee ring effect. Liu X, Dang A, Li T, Lee TC, Sun Y, Liu Y, Ye F, Ma S, Yang Y, Deng W. Biosens Bioelectron; 2023 Oct 01; 237():115531. PubMed ID: 37473547 [Abstract] [Full Text] [Related]
3. Graphene nanosheets-supported Ag nanoparticles for ultrasensitive detection of TNT by surface-enhanced Raman spectroscopy. Liu M, Chen W. Biosens Bioelectron; 2013 Aug 15; 46():68-73. PubMed ID: 23500479 [Abstract] [Full Text] [Related]
4. Enhancing Nonfouling and Sensitivity of Surface-Enhanced Raman Scattering Substrates for Potent Drug Analysis in Blood Plasma via Fabrication of a Flexible Plasmonic Patch. Masterson AN, Hati S, Ren G, Liyanage T, Manicke NE, Goodpaster JV, Sardar R. Anal Chem; 2021 Feb 02; 93(4):2578-2588. PubMed ID: 33432809 [Abstract] [Full Text] [Related]
5. Large-Scale Flexible Surface-Enhanced Raman Scattering (SERS) Sensors with High Stability and Signal Homogeneity. Liu X, Ma J, Jiang P, Shen J, Wang R, Wang Y, Tu G. ACS Appl Mater Interfaces; 2020 Oct 07; 12(40):45332-45341. PubMed ID: 32914628 [Abstract] [Full Text] [Related]
6. Wearable Plasmonic Sensors Engineered via Active-Site Maximization of TiVC MXene for Universal Physiological Monitoring at the Molecular Level. Liu X, Li T, Lee TC, Sun Y, Liu Y, Shang L, Han Y, Deng W, Yuan Z, Dang A. ACS Sens; 2024 Jan 26; 9(1):483-493. PubMed ID: 38206578 [Abstract] [Full Text] [Related]
7. Nanoarchitecture Based SERS for Biomolecular Fingerprinting and Label-Free Disease Markers Diagnosis. Sinha SS, Jones S, Pramanik A, Ray PC. Acc Chem Res; 2016 Dec 20; 49(12):2725-2735. PubMed ID: 27993003 [Abstract] [Full Text] [Related]
8. Photocatalytic Deposition of Au Nanoparticles on Ti3C2Tx MXene Substrates for Surface-Enhanced Raman Scattering. Yang Z, Yang L, Liu Y, Chen L. Molecules; 2024 May 18; 29(10):. PubMed ID: 38792245 [Abstract] [Full Text] [Related]
9. Hydrophobic expanded graphite-covered support to construct flexible and stable SERS substrate for sensitive determination by paste-sampling from irregular surfaces. Yu B, Mao Y, Li J, Wang J, Zhou B, Li P, Ma Y, Han Z. Spectrochim Acta A Mol Biomol Spectrosc; 2022 Dec 05; 282():121708. PubMed ID: 35933774 [Abstract] [Full Text] [Related]
10. In situ synthesis of graphene oxide/gold nanocomposites as ultrasensitive surface-enhanced Raman scattering substrates for clenbuterol detection. Sun Y, Chen H, Ma P, Li J, Zhang Z, Shi H, Zhang X. Anal Bioanal Chem; 2020 Jan 05; 412(1):193-201. PubMed ID: 31760449 [Abstract] [Full Text] [Related]
11. Ultrasensitive SERS detection of trinitrotoluene through capillarity-constructed reversible hot spots based on ZnO-Ag nanorod hybrids. He X, Wang H, Li Z, Chen D, Liu J, Zhang Q. Nanoscale; 2015 May 14; 7(18):8619-26. PubMed ID: 25899553 [Abstract] [Full Text] [Related]
12. ZnO-Ag hybrids for ultrasensitive detection of trinitrotoluene by surface-enhanced Raman spectroscopy. He X, Wang H, Li Z, Chen D, Zhang Q. Phys Chem Chem Phys; 2014 Jul 28; 16(28):14706-12. PubMed ID: 24920315 [Abstract] [Full Text] [Related]
13. A novel SERS selective detection sensor for trace trinitrotoluene based on meisenheimer complex of monoethanolamine molecule. Lin D, Dong R, Li P, Li S, Ge M, Zhang Y, Yang L, Xu W. Talanta; 2020 Oct 01; 218():121157. PubMed ID: 32797911 [Abstract] [Full Text] [Related]
14. 3D aluminum/silver hierarchical nanostructure with large areas of dense hot spots for surface-enhanced raman scattering. Zhao N, Li H, Xie Y, Feng Z, Wang Z, Yang Z, Yan X, Wang W, Tian C, Yu H. Electrophoresis; 2019 Dec 01; 40(23-24):3123-3131. PubMed ID: 31576580 [Abstract] [Full Text] [Related]
15. Rapid Fabrication of a Flexible and Transparent Ag Nanocubes@PDMS Film as a SERS Substrate with High Performance. Li L, Chin WS. ACS Appl Mater Interfaces; 2020 Aug 19; 12(33):37538-37548. PubMed ID: 32701289 [Abstract] [Full Text] [Related]
16. A photochemical approach to anchor Au NPs on MXene as a prominent SERS substrate for ultrasensitive detection of chlorpromazine. Barveen NR, Wang TJ, Chang YH. Mikrochim Acta; 2021 Dec 06; 189(1):16. PubMed ID: 34873648 [Abstract] [Full Text] [Related]
17. Flexible SERS sensor based on the photodecoration of Au-NPs on Co3O4 NWs/carbon fiber cloth for the ultrasensitive detection of methylene blue in the curved fish surfaces. Barveen NR, Chinnapaiyan S, Lee BY, Cheng YW. Anal Chim Acta; 2024 Jun 08; 1307():342629. PubMed ID: 38719416 [Abstract] [Full Text] [Related]
18. In situ regulation nanoarchitecture of Au nanoparticles/reduced graphene oxide colloid for sensitive and selective SERS detection of lead ions. Zhao L, Gu W, Zhang C, Shi X, Xian Y. J Colloid Interface Sci; 2016 Mar 01; 465():279-85. PubMed ID: 26688120 [Abstract] [Full Text] [Related]
19. Improved Surface-Enhanced Raman Scattering Performance of 2D Ti3C2Tx MXene Embedded in PVDF Film Enabled by Photoinduction and Electric Field Modulation. Pramanik M, Limaye MV, Sharma PK, Mishra M, Tripathy SK, Singh SB. ACS Appl Mater Interfaces; 2024 Jun 05; 16(22):29121-29131. PubMed ID: 38776248 [Abstract] [Full Text] [Related]
20. Optimized electromagnetic enhancement and charge transfer in MXene/Au/Cu2O hybrids for achieving efficient SERS. Zhao YX, Zheng ZX, Zhang LS, Feng JR, Ma L, Ding SJ. Phys Chem Chem Phys; 2023 Jun 07; 25(22):15209-15218. PubMed ID: 37232126 [Abstract] [Full Text] [Related] Page: [Next] [New Search]