These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


336 related items for PubMed ID: 3689427

  • 1. Role of glutathione reductase during menadione-induced NADPH oxidation in isolated rat hepatocytes.
    Smith PF, Alberts DW, Rush GF.
    Biochem Pharmacol; 1987 Nov 15; 36(22):3879-84. PubMed ID: 3689427
    [Abstract] [Full Text] [Related]

  • 2. Formation and reduction of glutathione-protein mixed disulfides during oxidative stress. A study with isolated hepatocytes and menadione (2-methyl-1,4-naphthoquinone).
    Bellomo G, Mirabelli F, DiMonte D, Richelmi P, Thor H, Orrenius C, Orrenius S.
    Biochem Pharmacol; 1987 Apr 15; 36(8):1313-20. PubMed ID: 3593416
    [Abstract] [Full Text] [Related]

  • 3. Menadione-induced oxidative stress in hepatocytes isolated from fed and fasted rats: the role of NADPH-regenerating pathways.
    Smith PF, Alberts DW, Rush GF.
    Toxicol Appl Pharmacol; 1987 Jun 30; 89(2):190-201. PubMed ID: 3603556
    [Abstract] [Full Text] [Related]

  • 4. Endogenous defenses against the cytotoxicity of hydrogen peroxide in cultured rat hepatocytes.
    Starke PE, Farber JL.
    J Biol Chem; 1985 Jan 10; 260(1):86-92. PubMed ID: 3965466
    [Abstract] [Full Text] [Related]

  • 5. Evidence for stimulated glutathione synthesis by phenobarbital pretreatment during an oxidative challenge in isolated hepatocytes.
    Utley WS, Mehendale HM.
    J Biochem Toxicol; 1991 Jan 10; 6(2):101-13. PubMed ID: 1941896
    [Abstract] [Full Text] [Related]

  • 6. Phenobarbital-induced cytoprotective mechanisms in menadione metabolism: the role of glutathione reductase and DT-diaphorase.
    Utley WS, Mehendale HM.
    Int J Biochem; 1990 Jan 10; 22(9):957-67. PubMed ID: 1704318
    [Abstract] [Full Text] [Related]

  • 7. The role of oxidative processes in the cytotoxicity of substituted 1,4-naphthoquinones in isolated hepatocytes.
    Ross D, Thor H, Threadgill MD, Sandy MS, Smith MT, Moldéus P, Orrenius S.
    Arch Biochem Biophys; 1986 Aug 01; 248(2):460-6. PubMed ID: 3017211
    [Abstract] [Full Text] [Related]

  • 8. Oxygen dependence of oxidative stress. Rate of NADPH supply for maintaining the GSH pool during hypoxia.
    Tribble DL, Jones DP.
    Biochem Pharmacol; 1990 Feb 15; 39(4):729-36. PubMed ID: 2306281
    [Abstract] [Full Text] [Related]

  • 9. Inhibition of biliary taurocholate excretion during menadione metabolism in perfused rat liver.
    Akerboom T, Bultmann T, Sies H.
    Arch Biochem Biophys; 1988 May 15; 263(1):10-8. PubMed ID: 3369854
    [Abstract] [Full Text] [Related]

  • 10. Oxidation of glutathione during hydroperoxide metabolism. A study using isolated hepatocytes and the glutathione reductase inhibitor 1,3-bis(2-chloroethyl)-1-nitrosourea.
    Eklöw L, Moldéus P, Orrenius S.
    Eur J Biochem; 1984 Feb 01; 138(3):459-63. PubMed ID: 6692829
    [Abstract] [Full Text] [Related]

  • 11. Multiple NADPH-producing pathways control glutathione (GSH) content in retina.
    Winkler BS, DeSantis N, Solomon F.
    Exp Eye Res; 1986 Nov 01; 43(5):829-47. PubMed ID: 3803464
    [Abstract] [Full Text] [Related]

  • 12. Involvement of glutathione reductase in selenite metabolism and toxicity, studied in isolated rat hepatocytes.
    Anundi I, Högberg J, Ståhl A.
    Arch Toxicol; 1982 Jul 01; 50(2):113-23. PubMed ID: 7125906
    [Abstract] [Full Text] [Related]

  • 13. tert.-Butyl hydroperoxide metabolism and stimulation of the pentose phosphate pathway in isolated rat hepatocytes.
    Rush GF, Alberts D.
    Toxicol Appl Pharmacol; 1986 Sep 30; 85(3):324-31. PubMed ID: 2945286
    [Abstract] [Full Text] [Related]

  • 14. Hepatic low-level chemiluminescence during redox cycling of menadione and the menadione-glutathione conjugate: relation to glutathione and NAD(P)H:quinone reductase (DT-diaphorase) activity.
    Wefers H, Sies H.
    Arch Biochem Biophys; 1983 Jul 15; 224(2):568-78. PubMed ID: 6191666
    [Abstract] [Full Text] [Related]

  • 15. Alterations in intracellular thiol homeostasis during the metabolism of menadione by isolated rat hepatocytes.
    Di Monte D, Ross D, Bellomo G, Eklöw L, Orrenius S.
    Arch Biochem Biophys; 1984 Dec 15; 235(2):334-42. PubMed ID: 6097182
    [Abstract] [Full Text] [Related]

  • 16. On the mechanisms of glutathione depletion in hepatocytes exposed to morphine and ethylmorphine.
    Eklöw-Låstbom L, Moldéus P, Orrenius S.
    Toxicology; 1986 Dec 01; 42(1):13-21. PubMed ID: 3798456
    [Abstract] [Full Text] [Related]

  • 17. Alterations in energy status by menadione metabolism in hepatocytes isolated from fasted and fed rats.
    Redegeld FA, Moison RM, Koster AS, Noordhoek J.
    Arch Biochem Biophys; 1989 Aug 15; 273(1):215-22. PubMed ID: 2757393
    [Abstract] [Full Text] [Related]

  • 18. Mechanisms of protection from menadione toxicity by 5,10-dihydroindeno[1,2,-b]indole in a sensitive and resistant mouse hepatocyte line.
    Liu RM, Sainsbury M, Tabor MW, Shertzer HG.
    Biochem Pharmacol; 1993 Oct 19; 46(8):1491-9. PubMed ID: 8240401
    [Abstract] [Full Text] [Related]

  • 19. A role for glutathione and glutathione reductase in control of corneal hydration.
    Riley MV.
    Exp Eye Res; 1984 Dec 19; 39(6):751-8. PubMed ID: 6519203
    [Abstract] [Full Text] [Related]

  • 20. Metabolism of pyridine nucleotides in cultured rat hepatocytes intoxicated with tert-butyl hydroperoxide.
    Yamamoto K, Farber JL.
    Biochem Pharmacol; 1992 Mar 03; 43(5):1119-26. PubMed ID: 1554384
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.