These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
152 related items for PubMed ID: 36896762
1. Biotransformation of ethylene glycol to glycolic acid by Yarrowia lipolytica: A route for poly(ethylene terephthalate) (PET) upcycling. Carniel A, Santos AG, Chinelatto LS, Castro AM, Coelho MAZ. Biotechnol J; 2023 Jun; 18(6):e2200521. PubMed ID: 36896762 [Abstract] [Full Text] [Related]
2. Exploring yeast biodiversity and process conditions for optimizing ethylene glycol conversion into glycolic acid. Senatore VG, Milanesi R, Masotti F, Maestroni L, Pagliari S, Cannavacciuolo C, Campone L, Serra I, Branduardi P. FEMS Yeast Res; 2024 Jan 09; 24():. PubMed ID: 39104224 [Abstract] [Full Text] [Related]
3. Post-Consumer Poly(ethylene terephthalate) (PET) Depolymerization by Yarrowia lipolytica: A Comparison between Hydrolysis Using Cell-Free Enzymatic Extracts and Microbial Submerged Cultivation. Sales JCS, de Castro AM, Ribeiro BD, Coelho MAZ. Molecules; 2022 Nov 03; 27(21):. PubMed ID: 36364329 [Abstract] [Full Text] [Related]
4. Metabolic engineering of Yarrowia lipolytica for poly(ethylene terephthalate) degradation. Kosiorowska KE, Biniarz P, Dobrowolski A, Leluk K, Mirończuk AM. Sci Total Environ; 2022 Jul 20; 831():154841. PubMed ID: 35358523 [Abstract] [Full Text] [Related]
5. Production of PETase by engineered Yarrowia lipolytica for efficient poly(ethylene terephthalate) biodegradation. Kosiorowska KE, Moreno AD, Iglesias R, Leluk K, Mirończuk AM. Sci Total Environ; 2022 Nov 10; 846():157358. PubMed ID: 35850328 [Abstract] [Full Text] [Related]
6. Biotransformation of ethylene glycol by engineered Escherichia coli. Yan W, Qi X, Cao Z, Yao M, Ding M, Yuan Y. Synth Syst Biotechnol; 2024 Sep 10; 9(3):531-539. PubMed ID: 38645974 [Abstract] [Full Text] [Related]
7. Improved production of biocatalysts by Yarrowia lipolytica using natural sources of the biopolyesters cutin and suberin, and their application in hydrolysis of poly (ethylene terephthalate) (PET). Sales JCS, de Castro AM, Ribeiro BD, Coelho MAZ. Bioprocess Biosyst Eng; 2021 Nov 10; 44(11):2277-2287. PubMed ID: 34165618 [Abstract] [Full Text] [Related]
8. Biotransformation of protein-rich waste by Yarrowia lipolytica IPS21 to high-value products-amino acid supernatants. Wieczorek D, Gendaszewska D, Miśkiewicz K, Słubik A, Ławińska K. Microbiol Spectr; 2023 Sep 14; 11(5):e0274923. PubMed ID: 37707427 [Abstract] [Full Text] [Related]
9. Okara (soybean residue) biotransformation by yeast Yarrowia lipolytica. Vong WC, Au Yang KL, Liu SQ. Int J Food Microbiol; 2016 Oct 17; 235():1-9. PubMed ID: 27391864 [Abstract] [Full Text] [Related]
10. Concentration-Dependent Photocatalytic Upcycling of Poly(ethylene terephthalate) Plastic Waste. Kang H, Washington A, Capobianco MD, Yan X, Cruz VV, Weed M, Johnson J, Johns G, Brudvig GW, Pan X, Gu J. ACS Mater Lett; 2023 Nov 06; 5(11):3032-3041. PubMed ID: 37969139 [Abstract] [Full Text] [Related]
11. Upcycling of poly(ethylene terephthalate) to produce high-value bio-products. Diao J, Hu Y, Tian Y, Carr R, Moon TS. Cell Rep; 2023 Jan 31; 42(1):111908. PubMed ID: 36640302 [Abstract] [Full Text] [Related]
13. Genomic and transcriptomic analysis screening key genes for (+)-valencene biotransformation to (+)-nootkatone in Yarrowia lipolytica. Li X, Ren JN, Fan G, He J, Zhang LL, Pan SY. Microbiol Res; 2022 Jul 31; 260():127042. PubMed ID: 35483313 [Abstract] [Full Text] [Related]
14. Yarrowia lipolytica Adhesion and Immobilization onto Residual Plastics. Botelho A, Penha A, Fraga J, Barros-Timmons A, Coelho MA, Lehocky M, Štěpánková K, Amaral P. Polymers (Basel); 2020 Mar 12; 12(3):. PubMed ID: 32178341 [Abstract] [Full Text] [Related]
15. Steroid biotransformations in biphasic systems with Yarrowia lipolytica expressing human liver cytochrome P450 genes. Braun A, Geier M, Bühler B, Schmid A, Mauersberger S, Glieder A. Microb Cell Fact; 2012 Aug 09; 11():106. PubMed ID: 22876969 [Abstract] [Full Text] [Related]
16. Proteomes reveal metabolic capabilities of Yarrowia lipolytica for biological upcycling of polyethylene into high-value chemicals. Walker C, Mortensen M, Poudel B, Cotter C, Myers R, Okekeogbu IO, Ryu S, Khomami B, Giannone RJ, Laursen S, Trinh CT. mSystems; 2023 Dec 21; 8(6):e0074123. PubMed ID: 37882587 [Abstract] [Full Text] [Related]
17. Biotechnological production of glycolic acid and ethylene glycol: current state and perspectives. Salusjärvi L, Havukainen S, Koivistoinen O, Toivari M. Appl Microbiol Biotechnol; 2019 Mar 21; 103(6):2525-2535. PubMed ID: 30707252 [Abstract] [Full Text] [Related]
18. Improving techno-economics of bioproduct glycolic acid by successive recycled-cell catalysis of ethylene glycol with Gluconobacter oxydans. Hua X, Zhou X, Xu Y. Bioprocess Biosyst Eng; 2018 Oct 21; 41(10):1555-1559. PubMed ID: 29948215 [Abstract] [Full Text] [Related]
19. Pharmacokinetics and biotransformation of diethylene glycol and ethylene glycol in the rat. Lenk W, Löhr D, Sonnenbichler J. Xenobiotica; 1989 Sep 21; 19(9):961-79. PubMed ID: 2815837 [Abstract] [Full Text] [Related]
20. Beneficial base substitutions in Escherichia coli fucO gene for enhancement of glycolic acid production. Nemoto M, Muranushi W, Shuting C, Saito Y, Sugimori D, Yamada M. J Biosci Bioeng; 2024 Oct 21; 138(4):301-307. PubMed ID: 39079834 [Abstract] [Full Text] [Related] Page: [Next] [New Search]