These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
259 related items for PubMed ID: 36898455
1. Construction of fully biodegradable poly(L-lactic acid)/poly(D-lactic acid)-poly(lactide-co-caprolactone) block polymer films: Viscoelasticity, processability and flexibility. He W, Ye L, Coates P, Caton-Rose F, Zhao X. Int J Biol Macromol; 2023 May 01; 236():123980. PubMed ID: 36898455 [Abstract] [Full Text] [Related]
2. Enhanced Rheological Properties of PLLA with a Purpose-Designed PDLA-b-PEG-b-PDLA Triblock Copolymer and the Application in the Film Blowing Process to Acquire Biodegradable PLLA Films. Jiang Y, Yan C, Shi D, Liu Z, Yang M. ACS Omega; 2019 Aug 20; 4(8):13295-13302. PubMed ID: 31460457 [Abstract] [Full Text] [Related]
3. The effect of blending poly (l-lactic acid) on in vivo performance of 3D-printed poly(l-lactide-co-caprolactone)/PLLA scaffolds. Duan R, Wang Y, Su D, Wang Z, Zhang Y, Du B, Liu L, Li X, Zhang Q. Biomater Adv; 2022 Jul 20; 138():212948. PubMed ID: 35913240 [Abstract] [Full Text] [Related]
4. Surface Modification of Poly(l-lactic acid) through Stereocomplexation with Enantiomeric Poly(d-lactic acid) and Its Copolymer. Zhu Q, Chang K, Qi L, Li X, Gao W, Gao Q. Polymers (Basel); 2021 May 27; 13(11):. PubMed ID: 34072033 [Abstract] [Full Text] [Related]
5. In vitro hydrolysis of blends from enantiomeric poly(lactide)s. Part 4: well-homo-crystallized blend and nonblended films. Tsuji H. Biomaterials; 2003 Feb 27; 24(4):537-47. PubMed ID: 12437948 [Abstract] [Full Text] [Related]
6. Enhanced stereocomplex formation of poly(L-lactic acid) and poly(D-lactic acid) in the presence of stereoblock poly(lactic acid). Fukushima K, Chang YH, Kimura Y. Macromol Biosci; 2007 Jun 07; 7(6):829-35. PubMed ID: 17541929 [Abstract] [Full Text] [Related]
7. Crystallization, rheology and mechanical properties of the blends of poly(l-lactide) with supramolecular polymers based on poly(d-lactide)-poly(ε-caprolactone-co-δ-valerolactone)-poly(d-lactide) triblock copolymers. Jing Z, Li J, Xiao W, Xu H, Hong P, Li Y. RSC Adv; 2019 Aug 19; 9(45):26067-26079. PubMed ID: 35531016 [Abstract] [Full Text] [Related]
8. Biocompatibility improvement and controlled in vitro degradation of poly (lactic acid)-b-poly(lactide-co-caprolactone) by formation of highly oriented structure for orthopedic application. Wang W, Liu Y, Ye L, Coates P, Caton-Rose F, Zhao X. J Biomed Mater Res B Appl Biomater; 2022 Nov 19; 110(11):2480-2493. PubMed ID: 35674722 [Abstract] [Full Text] [Related]
9. Blending with Poly(l-lactic acid) Improves the Printability of Poly(l-lactide-co-caprolactone) and Enhances the Potential Application in Cartilage Tissue Engineering. Duan R, Wang Y, Zhang Y, Wang Z, Du F, Du B, Su D, Liu L, Li X, Zhang Q. ACS Omega; 2021 Jul 20; 6(28):18300-18313. PubMed ID: 34308061 [Abstract] [Full Text] [Related]
10. Preferential formation of stereocomplex crystals in poly(L-lactic acid)/poly(D-lactic acid) blends by a fullerene nucleator. Chang WW, Niu J, Peng H, Rong W. Int J Biol Macromol; 2023 Dec 31; 253(Pt 5):127230. PubMed ID: 37797850 [Abstract] [Full Text] [Related]
11. Poly(lactic acid) stereocomplexes: A decade of progress. Tsuji H. Adv Drug Deliv Rev; 2016 Dec 15; 107():97-135. PubMed ID: 27125192 [Abstract] [Full Text] [Related]
12. Fabrication of high-performance poly(l-lactic acid)/lignin-graft-poly(d-lactic acid) stereocomplex films. Liu R, Dai L, Hu LQ, Zhou WQ, Si CL. Mater Sci Eng C Mater Biol Appl; 2017 Nov 01; 80():397-403. PubMed ID: 28866180 [Abstract] [Full Text] [Related]
13. Bio-based poly(lactic acid) foams with enhanced mechanical and heat-resistant properties obtained by facilitating stereocomplex crystallization with addition of D-sorbitol. Wang Y, Zou F, Lin M, Xing S, Peng Q, Li G, Liao X. Int J Biol Macromol; 2024 Apr 01; 265(Pt 1):130902. PubMed ID: 38492697 [Abstract] [Full Text] [Related]
14. Stereocomplex formation between enantiomeric poly(lactic acid)s. 12. spherulite growth of low-molecular-weight poly(lactic acid)s from the melt. Tsuji H, Tezuka Y. Biomacromolecules; 2004 Apr 01; 5(4):1181-6. PubMed ID: 15244428 [Abstract] [Full Text] [Related]
15. Stereo-complex crystallization of poly(lactic acid)s in block-copolymer phase separation. Uehara H, Karaki Y, Wada S, Yamanobe T. ACS Appl Mater Interfaces; 2010 Oct 01; 2(10):2707-10. PubMed ID: 20836564 [Abstract] [Full Text] [Related]
16. Effects of poly(L-lactide-ε-caprolactone) and magnesium hydroxide additives on physico-mechanical properties and degradation of poly(L-lactic acid). Kang EY, Lih E, Kim IH, Joung YK, Han DK. Biomater Res; 2016 Oct 01; 20():7. PubMed ID: 26981259 [Abstract] [Full Text] [Related]
17. Effect of poly(ɛ-caprolactone-co-L-lactide) on thermal and functional properties of poly(L-lactide). Qin Y, Liu S, Zhang Y, Yuan M, Li H, Yuan M. Int J Biol Macromol; 2014 Sep 01; 70():327-33. PubMed ID: 25020084 [Abstract] [Full Text] [Related]
18. Heparinized PLLA/PLCL nanofibrous scaffold for potential engineering of small-diameter blood vessel: tunable elasticity and anticoagulation property. Wang W, Hu J, He C, Nie W, Feng W, Qiu K, Zhou X, Gao Y, Wang G. J Biomed Mater Res A; 2015 May 01; 103(5):1784-97. PubMed ID: 25196988 [Abstract] [Full Text] [Related]
19. Well-organized neointima of large-pore poly(L-lactic acid) vascular graft coated with poly(L-lactic-co-ε-caprolactone) prevents calcific deposition compared to small-pore electrospun poly(L-lactic acid) graft in a mouse aortic implantation model. Tara S, Kurobe H, Rocco KA, Maxfield MW, Best CA, Yi T, Naito Y, Breuer CK, Shinoka T. Atherosclerosis; 2014 Dec 01; 237(2):684-91. PubMed ID: 25463106 [Abstract] [Full Text] [Related]
20. Biodegradable films of partly branched poly(l-lactide)-co-poly(epsilon-caprolactone) copolymer: modulation of phase morphology, plasticization properties and thermal depolymerization. Broström J, Boss A, Chronakis IS. Biomacromolecules; 2004 Dec 01; 5(3):1124-34. PubMed ID: 15132708 [Abstract] [Full Text] [Related] Page: [Next] [New Search]