These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
117 related items for PubMed ID: 36906919
1. Foldable RF Energy Harvesting System Based on Vertically Layered Metal Electrodes within a Single Sheet of Paper. Oh IH, Park E, Chang ST, Lim S. Adv Mater; 2023 May; 35(20):e2300197. PubMed ID: 36906919 [Abstract] [Full Text] [Related]
2. A Fully-Integrated Ambient RF Energy Harvesting System with 423-μW Output Power. Pakkirisami Churchill KK, Ramiah H, Chong G, Chen Y, Mak PI, Martins RP. Sensors (Basel); 2022 Jun 10; 22(12):. PubMed ID: 35746197 [Abstract] [Full Text] [Related]
3. CMOS Radio Frequency Energy Harvester (RFEH) with Fully On-Chip Tunable Voltage-Booster for Wideband Sensitivity Enhancement. Li Y, Rajendran J, Mariappan S, Rawat AS, Sal Hamid S, Kumar N, Othman M, Nathan A. Micromachines (Basel); 2023 Feb 04; 14(2):. PubMed ID: 36838092 [Abstract] [Full Text] [Related]
4. Development of 2400-2450 MHz Frequency Band RF Energy Harvesting System for Low-Power Device Operation. Khan NU, Ullah S, Khan FU, Merla A. Sensors (Basel); 2024 May 08; 24(10):. PubMed ID: 38793841 [Abstract] [Full Text] [Related]
5. Foldable and wearable supercapacitors for powering healthcare monitoring applications with improved performance based on hierarchically co-assembled CoO/NiCo networks. Qu X, Kwon YW, Jeon S, Jeong J, Kang W, Jiang Z, Zhang C, Hong SW. J Colloid Interface Sci; 2023 Mar 15; 634():715-729. PubMed ID: 36563428 [Abstract] [Full Text] [Related]
6. Self-Sustainable Biomedical Devices Powered by RF Energy: A Review. Yahya Alkhalaf H, Yazed Ahmad M, Ramiah H. Sensors (Basel); 2022 Aug 24; 22(17):. PubMed ID: 36080825 [Abstract] [Full Text] [Related]
7. Inkjet-Printed Electrodes on A4 Paper Substrates for Low-Cost, Disposable, and Flexible Asymmetric Supercapacitors. Sundriyal P, Bhattacharya S. ACS Appl Mater Interfaces; 2017 Nov 08; 9(44):38507-38521. PubMed ID: 28991438 [Abstract] [Full Text] [Related]
8. Water Peel-Off Transfer of Electronically Enhanced, Paper-Based Laser-Induced Graphene for Wearable Electronics. Pinheiro T, Correia R, Morais M, Coelho J, Fortunato E, Sales MGF, Marques AC, Martins R. ACS Nano; 2022 Dec 27; 16(12):20633-20646. PubMed ID: 36383513 [Abstract] [Full Text] [Related]
9. Hybrid dual-function thermal energy harvesting and storage technologies: towards self-chargeable flexible/wearable devices. Teixeira JS, Costa RS, Pires AL, Pereira AM, Pereira C. Dalton Trans; 2021 Jul 27; 50(29):9983-10013. PubMed ID: 34264261 [Abstract] [Full Text] [Related]
10. Stretchable, porous, and conductive energy textiles. Hu L, Pasta M, Mantia FL, Cui L, Jeong S, Deshazer HD, Choi JW, Han SM, Cui Y. Nano Lett; 2010 Feb 10; 10(2):708-14. PubMed ID: 20050691 [Abstract] [Full Text] [Related]
11. Electrostatic Energy Harvesting from Human Interactions with Smart Paper Electronics. Zhou AY, Maharbiz MM. Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul 10; 2020():4506-4509. PubMed ID: 33018995 [Abstract] [Full Text] [Related]
12. An Enhanced Multiplication of RF Energy Harvesting Efficiency Using Relay Resonator for Food Monitoring. Cao XT, Chung WY. Sensors (Basel); 2019 Apr 26; 19(9):. PubMed ID: 31027382 [Abstract] [Full Text] [Related]
13. Energy harvesting from radio waves using few-layer 2D galena (galenene). R K, Singh AK, Sreeram PR, Mahapatra PL, Galvao DS, Tiwary CS. Nanoscale; 2023 May 25; 15(20):9022-9030. PubMed ID: 37129437 [Abstract] [Full Text] [Related]
14. Consecutive Ink Writing of Conducting Polymer and Graphene Composite Electrodes for Foldable Electronics-Related Applications. Lee H, Kim Y, Kim J, Moon SY, Lee JU. Polymers (Basel); 2022 Dec 03; 14(23):. PubMed ID: 36501688 [Abstract] [Full Text] [Related]
15. Flexible Ferroelectret Polymer for Self-Powering Devices and Energy Storage Systems. Cao Y, Figueroa J, Pastrana JJ, Li W, Chen Z, Wang ZL, Sepúlveda N. ACS Appl Mater Interfaces; 2019 May 15; 11(19):17400-17409. PubMed ID: 31002218 [Abstract] [Full Text] [Related]
16. Freestanding Lamellar Porous Carbon Stacks for Low-Temperature-Foldable Supercapacitors. Yang Y, Ng SW, Chen D, Chang J, Wang D, Shang J, Huang Q, Deng Y, Zheng Z. Small; 2019 Nov 15; 15(48):e1902071. PubMed ID: 31293097 [Abstract] [Full Text] [Related]
17. Growth of a Large-Area, Free-Standing, Highly Conductive and Fully Foldable Silver Film with Inverted Pyramids for Wearable Electronics Applications. Yu X, Li Z, Liu Y, Zhao W, Xu R, Wang D, Shen H. ACS Appl Mater Interfaces; 2017 Feb 15; 9(6):5312-5318. PubMed ID: 28102074 [Abstract] [Full Text] [Related]
18. Synthesis, Characterization and Development of Energy Harvesting Techniques Incorporated with Antennas: A Review Study. Ibrahim HH, Singh MSJ, Al-Bawri SS, Islam MT. Sensors (Basel); 2020 May 13; 20(10):. PubMed ID: 32414069 [Abstract] [Full Text] [Related]
19. A Highly Efficient RF-DC Converter for Energy Harvesting Applications Using a Threshold Voltage Cancellation Scheme. Basim M, Khan D, Ain QU, Shehzad K, Shah SAA, Jang BG, Pu YG, Yoo JM, Kim JT, Lee KY. Sensors (Basel); 2022 Mar 30; 22(7):. PubMed ID: 35408273 [Abstract] [Full Text] [Related]
20. Design of a Highly Efficient Wideband Multi-Frequency Ambient RF Energy Harvester. Roy S, Tiang JJ, Roslee MB, Ahmed MT, Kouzani AZ, Mahmud MAP. Sensors (Basel); 2022 Jan 06; 22(2):. PubMed ID: 35062383 [Abstract] [Full Text] [Related] Page: [Next] [New Search]