These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
225 related items for PubMed ID: 36907040
1. Predicting muscle invasion in bladder cancer based on MRI: A comparison of radiomics, and single-task and multi-task deep learning. Li J, Qiu Z, Cao K, Deng L, Zhang W, Xie C, Yang S, Yue P, Zhong J, Lyu J, Huang X, Zhang K, Zou Y, Huang B. Comput Methods Programs Biomed; 2023 May; 233():107466. PubMed ID: 36907040 [Abstract] [Full Text] [Related]
2. Predicting muscle invasion in bladder cancer by deep learning analysis of MRI: comparison with vesical imaging-reporting and data system. Li J, Cao K, Lin H, Deng L, Yang S, Gao Y, Liang M, Lin C, Zhang W, Xie C, Zhang K, Luo J, Pan Z, Yue P, Zou Y, Huang B. Eur Radiol; 2023 Apr; 33(4):2699-2709. PubMed ID: 36434397 [Abstract] [Full Text] [Related]
3. Compressed sensing 3D T2WI radiomics model: improving diagnostic performance in muscle invasion of bladder cancer. Li S, Fan Z, Guo J, Li D, Chen Z, Zhang X, Wang Y, Li Y, Yang G, Wang X. BMC Med Imaging; 2024 Jun 17; 24(1):148. PubMed ID: 38886638 [Abstract] [Full Text] [Related]
4. Assessment of Lymphovascular Invasion in Breast Cancer Using a Combined MRI Morphological Features, Radiomics, and Deep Learning Approach Based on Dynamic Contrast-Enhanced MRI. Yang X, Fan X, Lin S, Zhou Y, Liu H, Wang X, Zuo Z, Zeng Y. J Magn Reson Imaging; 2024 Jun 17; 59(6):2238-2249. PubMed ID: 37855421 [Abstract] [Full Text] [Related]
5. Differentiating Benign from Malignant Renal Tumors Using T2- and Diffusion-Weighted Images: A Comparison of Deep Learning and Radiomics Models Versus Assessment from Radiologists. Xu Q, Zhu Q, Liu H, Chang L, Duan S, Dou W, Li S, Ye J. J Magn Reson Imaging; 2022 Apr 17; 55(4):1251-1259. PubMed ID: 34462986 [Abstract] [Full Text] [Related]
6. Machine learning-based CT radiomics enhances bladder cancer staging predictions: A comparative study of clinical, radiomics, and combined models. Xiong S, Fu Z, Deng Z, Li S, Zhan X, Zheng F, Yang H, Liu X, Xu S, Liu H, Fan B, Dong W, Song Y, Fu B. Med Phys; 2024 Sep 17; 51(9):5965-5977. PubMed ID: 38977273 [Abstract] [Full Text] [Related]
8. Radiomics Prediction of Muscle Invasion in Bladder Cancer Using Semi-Automatic Lesion Segmentation of MRI Compared with Manual Segmentation. Ye Y, Luo Z, Qiu Z, Cao K, Huang B, Deng L, Zhang W, Liu G, Zou Y, Zhang J, Li J. Bioengineering (Basel); 2023 Nov 25; 10(12):. PubMed ID: 38135946 [Abstract] [Full Text] [Related]
10. Development and validation of a CT-based deep learning radiomics nomogram to predict muscle invasion in bladder cancer. Wei Z, Liu H, Xv Y, Liao F, He Q, Xie Y, Lv F, Jiang Q, Xiao M. Heliyon; 2024 Jan 30; 10(2):e24878. PubMed ID: 38304824 [Abstract] [Full Text] [Related]
11. A CT-based deep learning model predicts overall survival in patients with muscle invasive bladder cancer after radical cystectomy: a multicenter retrospective cohort study. Wei Z, Xv Y, Liu H, Li Y, Yin S, Xie Y, Chen Y, Lv F, Jiang Q, Li F, Xiao M. Int J Surg; 2024 May 01; 110(5):2922-2932. PubMed ID: 38349205 [Abstract] [Full Text] [Related]
14. Radiomics analysis of multiparametric MRI for the preoperative evaluation of pathological grade in bladder cancer tumors. Wang H, Hu D, Yao H, Chen M, Li S, Chen H, Luo J, Feng Y, Guo Y. Eur Radiol; 2019 Nov 01; 29(11):6182-6190. PubMed ID: 31016445 [Abstract] [Full Text] [Related]
16. Elaboration of a multisequence MRI-based radiomics signature for the preoperative prediction of the muscle-invasive status of bladder cancer: a double-center study. Wang H, Xu X, Zhang X, Liu Y, Ouyang L, Du P, Li S, Tian Q, Ling J, Guo Y, Lu H. Eur Radiol; 2020 Sep 01; 30(9):4816-4827. PubMed ID: 32318846 [Abstract] [Full Text] [Related]
18. CT-based deep learning radiomics nomogram for the prediction of pathological grade in bladder cancer: a multicenter study. Song H, Yang S, Yu B, Li N, Huang Y, Sun R, Wang B, Nie P, Hou F, Huang C, Zhang M, Wang H. Cancer Imaging; 2023 Sep 18; 23(1):89. PubMed ID: 37723572 [Abstract] [Full Text] [Related]
19. Multi-task deep learning based on T2-Weighted Images for predicting Muscular-Invasive Bladder Cancer. Zou Y, Cai L, Chen C, Shao Q, Fu X, Yu J, Wang L, Chen Z, Yang X, Yuan B, Liu P, Lu Q. Comput Biol Med; 2022 Dec 18; 151(Pt A):106219. PubMed ID: 36343408 [Abstract] [Full Text] [Related]