These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
150 related items for PubMed ID: 36924078
1. Regulated Thermal Boundary Conductance between Copper and Diamond through Nanoscale Interfacial Rough Structures. Wang Z, Sun F, Liu Z, Zheng L, Wang D, Feng Y. ACS Appl Mater Interfaces; 2023 Mar 29; 15(12):16162-16176. PubMed ID: 36924078 [Abstract] [Full Text] [Related]
2. Quantifying Interfacial Bonding Using Thermal Boundary Conductance at Cubic Boron Nitride/Copper Interfaces with a Large Mismatch of Phonon Density of States. Chen N, Yang K, Wang Z, Zhong B, Wang J, Song J, Li Q, Ni J, Sun F, Liu Y, Fan T. ACS Appl Mater Interfaces; 2023 Jul 19; 15(28):34132-34144. PubMed ID: 37405384 [Abstract] [Full Text] [Related]
3. Interfacial Thermal Conductance between Cu and Diamond with Interconnected W-W2C Interlayer. Zhang Y, Wang Z, Li N, Che Z, Liu X, Chang G, Hao J, Dai J, Wang X, Sun F, Zhang H. ACS Appl Mater Interfaces; 2022 Aug 03; 14(30):35215-35228. PubMed ID: 35878880 [Abstract] [Full Text] [Related]
4. Thermal Conductance of Copper-Graphene Interface: A Molecular Simulation. Zhu J, Huang S, Xie Z, Guo H, Yang H. Materials (Basel); 2022 Oct 28; 15(21):. PubMed ID: 36363179 [Abstract] [Full Text] [Related]
5. Significantly Enhanced Interfacial Thermal Conductance across GaN/Diamond Interfaces Utilizing AlxGa1-xN as a Phonon Bridge. Wu K, Chang G, Ye J, Zhang G. ACS Appl Mater Interfaces; 2024 Oct 30; 16(43):58880-58890. PubMed ID: 39422442 [Abstract] [Full Text] [Related]
6. Thermal Visualization of Buried Interfaces Enabled by Ratio Signal and Steady-State Heating of Time-Domain Thermoreflectance. Cheng Z, Mu F, Ji X, You T, Xu W, Suga T, Ou X, Cahill DG, Graham S. ACS Appl Mater Interfaces; 2021 Jul 14; 13(27):31843-31851. PubMed ID: 34191480 [Abstract] [Full Text] [Related]
7. Linking Interfacial Bonding and Thermal Conductivity in Molecularly-Confined Polymer-Glass Nanocomposites with Ultra-High Interfacial Density. Wang Y, Collinson DW, Kwon H, Miller RD, Lionti K, Goodson KE, Dauskardt RH. Small; 2023 Jul 14; 19(28):e2301383. PubMed ID: 36971287 [Abstract] [Full Text] [Related]
8. Interfacial Thermal Conductance across Room-Temperature-Bonded GaN/Diamond Interfaces for GaN-on-Diamond Devices. Cheng Z, Mu F, Yates L, Suga T, Graham S. ACS Appl Mater Interfaces; 2020 Feb 19; 12(7):8376-8384. PubMed ID: 31986013 [Abstract] [Full Text] [Related]
9. Spatial Mapping of Thermal Boundary Conductance at Metal-Molybdenum Diselenide Interfaces. Brown DB, Shen W, Li X, Xiao K, Geohegan DB, Kumar S. ACS Appl Mater Interfaces; 2019 Apr 17; 11(15):14418-14426. PubMed ID: 30896146 [Abstract] [Full Text] [Related]
10. Self-Assembled Monolayers for the Polymer/Semiconductor Interface with Improved Interfacial Thermal Management. Lu J, Yuan K, Sun F, Zheng K, Zhang Z, Zhu J, Wang X, Zhang X, Zhuang Y, Ma Y, Cao X, Zhang J, Tang D. ACS Appl Mater Interfaces; 2019 Nov 13; 11(45):42708-42714. PubMed ID: 31625728 [Abstract] [Full Text] [Related]
11. Chemical Reactions Impede Thermal Transport Across Metal/β-Ga2O3 Interfaces. Aller HT, Yu X, Wise A, Howell RS, Gellman AJ, McGaughey AJH, Malen JA. Nano Lett; 2019 Dec 11; 19(12):8533-8538. PubMed ID: 31747285 [Abstract] [Full Text] [Related]
12. Mechanical regulation to interfacial thermal transport in GaN/diamond heterostructures for thermal switch. Yu X, Li Y, He R, Wen Y, Chen R, Xu B, Gao Y. Nanoscale Horiz; 2024 Aug 19; 9(9):1557-1567. PubMed ID: 39016031 [Abstract] [Full Text] [Related]
13. Properties for Thermally Conductive Interfaces with Wide Band Gap Materials. Khan S, Angeles F, Wright J, Vishwakarma S, Ortiz VH, Guzman E, Kargar F, Balandin AA, Smith DJ, Jena D, Xing HG, Wilson R. ACS Appl Mater Interfaces; 2022 Aug 10; 14(31):36178-36188. PubMed ID: 35895030 [Abstract] [Full Text] [Related]
14. Thermal Transport across Metal/β-Ga2O3 Interfaces. Shi J, Yuan C, Huang HL, Johnson J, Chae C, Wang S, Hanus R, Kim S, Cheng Z, Hwang J, Graham S. ACS Appl Mater Interfaces; 2021 Jun 23; 13(24):29083-29091. PubMed ID: 34109790 [Abstract] [Full Text] [Related]
15. Enhancing Thermal Boundary Conductance of Graphite-Metal Interface by Triazine-Based Molecular Bonding. Ota A, Ohnishi M, Oshima H, Shiga T, Kodama T, Shiomi J. ACS Appl Mater Interfaces; 2019 Oct 09; 11(40):37295-37301. PubMed ID: 31525013 [Abstract] [Full Text] [Related]
16. Thermal Characterization of Metal-Oxide Interfaces Using Time-Domain Thermoreflectance with Nanograting Transducers. Kwon H, Perez C, Park W, Asheghi M, Goodson KE. ACS Appl Mater Interfaces; 2021 Dec 08; 13(48):58059-58065. PubMed ID: 34797056 [Abstract] [Full Text] [Related]
17. Theoretical analysis of thermal boundary conductance of MoS2-SiO2and WS2-SiO2interface. Ong ZY, Cai Y, Zhang G, Zhang YW. Nanotechnology; 2020 Dec 09. PubMed ID: 33296879 [Abstract] [Full Text] [Related]
18. Theoretical analysis of thermal boundary conductance of MoS2-SiO2 and WS2-SiO2 interface. Ong ZY, Cai Y, Zhang G, Zhang YW. Nanotechnology; 2021 Jan 07; 32(13):135402. PubMed ID: 33410419 [Abstract] [Full Text] [Related]
19. Experimental observation of localized interfacial phonon modes. Cheng Z, Li R, Yan X, Jernigan G, Shi J, Liao ME, Hines NJ, Gadre CA, Idrobo JC, Lee E, Hobart KD, Goorsky MS, Pan X, Luo T, Graham S. Nat Commun; 2021 Nov 25; 12(1):6901. PubMed ID: 34824284 [Abstract] [Full Text] [Related]
20. Enhanced Thermal Boundary Conductance across GaN/SiC Interfaces with AlN Transition Layers. Li R, Hussain K, Liao ME, Huynh K, Hoque MSB, Wyant S, Koh YR, Xu Z, Wang Y, Luccioni DP, Cheng Z, Shi J, Lee E, Graham S, Henry A, Hopkins PE, Goorsky MS, Khan MA, Luo T. ACS Appl Mater Interfaces; 2024 Feb 14; 16(6):8109-8118. PubMed ID: 38315970 [Abstract] [Full Text] [Related] Page: [Next] [New Search]