These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


212 related items for PubMed ID: 36931196

  • 1. Probing the pressure dependence of sound speed and attenuation in bubbly media: Experimental observations, a theoretical model and numerical calculations.
    Sojahrood AJ, Li Q, Haghi H, Karshafian R, Porter TM, Kolios MC.
    Ultrason Sonochem; 2023 May; 95():106319. PubMed ID: 36931196
    [Abstract] [Full Text] [Related]

  • 2. Acoustic spectrometry of bubbles in an estuarine front: Sound speed dispersion, void fraction, and bubble density.
    Reeder DB, Joseph JE, Rago TA, Bullard JM, Honegger D, Haller MC.
    J Acoust Soc Am; 2022 Apr; 151(4):2429. PubMed ID: 35461491
    [Abstract] [Full Text] [Related]

  • 3. Phase speed and attenuation in bubbly liquids inferred from impedance measurements near the individual bubble resonance frequency.
    Wilson PS, Roy RA, Carey WM.
    J Acoust Soc Am; 2005 Apr; 117(4 Pt 1):1895-910. PubMed ID: 15898635
    [Abstract] [Full Text] [Related]

  • 4. Sound attenuation in high mach number oscillating bubble media.
    Yu J, Yang D, Zhang J.
    Ultrason Sonochem; 2023 Dec; 101():106699. PubMed ID: 38006820
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. A strict formulation of a nonlinear Helmholtz equation for the propagation of sound in bubbly liquids. Part II: Application to ultrasonic cavitation.
    Trujillo FJ.
    Ultrason Sonochem; 2020 Jul; 65():105056. PubMed ID: 32172147
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. A numerical model for the study of the difference frequency generated from nonlinear mixing of standing ultrasonic waves in bubbly liquids.
    Tejedor Sastre MT, Vanhille C.
    Ultrason Sonochem; 2017 Jan; 34():881-888. PubMed ID: 27773316
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Interaction of an ultrasound-activated contrast microbubble with a wall at arbitrary separation distances.
    Doinikov AA, Bouakaz A.
    Phys Med Biol; 2015 Oct 21; 60(20):7909-25. PubMed ID: 26407104
    [Abstract] [Full Text] [Related]

  • 13. A simple model of ultrasound propagation in a cavitating liquid. Part I: Theory, nonlinear attenuation and traveling wave generation.
    Louisnard O.
    Ultrason Sonochem; 2012 Jan 21; 19(1):56-65. PubMed ID: 21764348
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Theoretical and experimental investigations of ultrasonic sound fields in thin bubbly liquid layers for ultrasonic cavitation peening.
    Bai F, Long Y, Saalbach KA, Twiefel J.
    Ultrasonics; 2019 Mar 21; 93():130-138. PubMed ID: 30508727
    [Abstract] [Full Text] [Related]

  • 16. Nonlinear ultrasonic propagation in bubbly liquids: a numerical model.
    Vanhille C, Campos-Pozuelo C.
    Ultrasound Med Biol; 2008 May 21; 34(5):792-808. PubMed ID: 18314254
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Prediction of the acoustic and bubble fields in insonified freeze-drying vials.
    Louisnard O, Cogné C, Labouret S, Montes-Quiroz W, Peczalski R, Baillon F, Espitalier F.
    Ultrason Sonochem; 2015 Sep 21; 26():186-192. PubMed ID: 25800984
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.