These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Inhomogeneity during deflation of excised canine lungs. I. Alveolar pressures. Warner DO, Hyatt RE, Rehder K. J Appl Physiol (1985); 1988 Oct; 65(4):1757-65. PubMed ID: 3182537 [Abstract] [Full Text] [Related]
7. Interdependence of regional expiratory flow. Wilson TA, Fredberg JJ, Rodarte JR, Hyatt RE. J Appl Physiol (1985); 1985 Dec; 59(6):1924-8. PubMed ID: 4077799 [Abstract] [Full Text] [Related]
8. Computational model for forced expiration from asymmetric normal lungs. Polak AG, Lutchen KR. Ann Biomed Eng; 2003 Sep; 31(8):891-907. PubMed ID: 12918904 [Abstract] [Full Text] [Related]
9. Heterogeneity of maximal lobar emptying rates in dogs with compensatory lung growth. Mink SN, Holtby SG, Berenzanski DJ, Oppenheimer L, Anthonisen NR. J Appl Physiol (1985); 1989 Sep; 67(3):1164-70. PubMed ID: 2793708 [Abstract] [Full Text] [Related]
10. Changes in regional emptying sequence need not change maximum expiratory flow. Filuk RB, Anthonisen NR. J Appl Physiol (1985); 1986 Jun; 60(6):1834-8. PubMed ID: 3722051 [Abstract] [Full Text] [Related]
11. Properties of steady maximal expiratory flow within excised canine central airways. Solway J. J Appl Physiol (1985); 1988 Apr; 64(4):1650-8. PubMed ID: 3378999 [Abstract] [Full Text] [Related]
12. Alveolar pressure inhomogeneity during low-frequency oscillation of excised canine lobes. Warner DO. J Appl Physiol (1985); 1990 Jul; 69(1):155-61. PubMed ID: 2394645 [Abstract] [Full Text] [Related]
13. Thoracic gas compression during forced expiration is greater in men than women. Gideon EA, Cross TJ, Cayo BE, Betts AW, Merrell DS, Coriell CL, Hays LE, Duke JW. Physiol Rep; 2020 Mar; 8(6):e14404. PubMed ID: 32207254 [Abstract] [Full Text] [Related]
14. Effect of lung volume on forced expiratory flows during rapid thoracoabdominal compression in infants. Hammer J, Newth CJ. J Appl Physiol (1985); 1995 May; 78(5):1993-7. PubMed ID: 7649939 [Abstract] [Full Text] [Related]
15. Lung inflation does not increase maximal expiratory flow during induced obstruction in the dog. Ludwig MS, McNamara JJ, Castile RG, Glass GM, Fredberg JJ, Ingram RH. J Appl Physiol (1985); 1988 Jul; 65(1):415-21. PubMed ID: 3403485 [Abstract] [Full Text] [Related]
16. Expiratory flow limitation in dogs with regional changes in lung mechanical properties. Mink SN, Greville H, Gomez A, Eng J. J Appl Physiol (1985); 1988 Jan; 64(1):162-73. PubMed ID: 3356633 [Abstract] [Full Text] [Related]
17. Importance of airway closure in limiting maximal expiration in normal man. Davis C, Campbell EJ, Openshaw P, Pride NB, Woodroof G. J Appl Physiol Respir Environ Exerc Physiol; 1980 Apr; 48(4):695-701. PubMed ID: 7380692 [Abstract] [Full Text] [Related]
18. Configuration of maximum expiratory flow-volume curve: model experiments with physiological implications. Pedersen OF, Ingram RH. J Appl Physiol (1985); 1985 Apr; 58(4):1305-13. PubMed ID: 3988684 [Abstract] [Full Text] [Related]
19. Mechanism of reduced maximum expiratory flow in dogs with compensatory lung growth. Greville HW, Arnup ME, Mink SN, Oppenheimer L, Anthonisen NR. J Appl Physiol (1985); 1986 Feb; 60(2):441-8. PubMed ID: 3949649 [Abstract] [Full Text] [Related]
20. Breathing at low lung volumes and chest strapping: a comparison of lung mechanics. Douglas NJ, Drummond GB, Sudlow MF. J Appl Physiol Respir Environ Exerc Physiol; 1981 Mar; 50(3):650-7. PubMed ID: 7251453 [Abstract] [Full Text] [Related] Page: [Next] [New Search]