These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
190 related items for PubMed ID: 36934115
41. Polydopamine-Coated Manganese Carbonate Nanoparticles for Amplified Magnetic Resonance Imaging-Guided Photothermal Therapy. Cheng Y, Zhang S, Kang N, Huang J, Lv X, Wen K, Ye S, Chen Z, Zhou X, Ren L. ACS Appl Mater Interfaces; 2017 Jun 07; 9(22):19296-19306. PubMed ID: 28508635 [Abstract] [Full Text] [Related]
46. Polydopamine coated hollow mesoporous silica nanoparticles as pH-sensitive nanocarriers for overcoming multidrug resistance. Shao M, Chang C, Liu Z, Chen K, Zhou Y, Zheng G, Huang Z, Xu H, Xu P, Lu B. Colloids Surf B Biointerfaces; 2019 Nov 01; 183():110427. PubMed ID: 31408782 [Abstract] [Full Text] [Related]
47. Enzymatic-reaction induced production of polydopamine nanoparticles for sensitive and visual sensing of urea. Li N, Wang HB, Thia L, Wang JY, Wang X. Analyst; 2015 Jan 21; 140(2):449-55. PubMed ID: 25422832 [Abstract] [Full Text] [Related]
48. Evaluation of methotrexate-conjugated gadolinium(III) for cancer diagnosis and treatment. Xu D, Lu ST, Li YS, Baidya A, Mei H, He Y, Wu B. Drug Des Devel Ther; 2018 Jan 21; 12():3301-3309. PubMed ID: 30323562 [Abstract] [Full Text] [Related]
49. Characterization of Hyaluronic Acid-Coated PLGA Nanoparticles by Surface-Enhanced Raman Spectroscopy. La Verde G, Sasso A, Rusciano G, Capaccio A, Fusco S, Mayol L, Biondi M, Silvestri T, Netti PA, La Commara M, Panzetta V, Pugliese M. Int J Mol Sci; 2022 Dec 29; 24(1):. PubMed ID: 36614044 [Abstract] [Full Text] [Related]
51. Hyaluronic acid-coated nanoparticles for targeted photodynamic therapy of cancer guided by near-infrared and MR imaging. Park KE, Noh YW, Kim A, Lim YT. Carbohydr Polym; 2017 Feb 10; 157():476-483. PubMed ID: 27987951 [Abstract] [Full Text] [Related]
54. One-pot preparation of hyaluronic acid-coated iron oxide nanoparticles for magnetic hyperthermia therapy and targeting CD44-overexpressing cancer cells. Soleymani M, Velashjerdi M, Shaterabadi Z, Barati A. Carbohydr Polym; 2020 Jun 01; 237():116130. PubMed ID: 32241421 [Abstract] [Full Text] [Related]
55. CD44-specific nanoparticles for redox-triggered reactive oxygen species production and doxorubicin release. Lin CW, Lu KY, Wang SY, Sung HW, Mi FL. Acta Biomater; 2016 Apr 15; 35():280-92. PubMed ID: 26853764 [Abstract] [Full Text] [Related]
56. Development and mechanistic insight into enhanced cytotoxic potential of hyaluronic acid conjugated nanoparticles in CD44 overexpressing cancer cells. Saneja A, Nayak D, Srinivas M, Kumar A, Khare V, Katoch A, Goswami A, Vishwakarma RA, Sawant SD, Gupta PN. Eur J Pharm Sci; 2017 Jan 15; 97():79-91. PubMed ID: 27989859 [Abstract] [Full Text] [Related]
57. Colloidally Stable P(DMA-AGME)-Ale-Coated Gd(Tb)F3:Tb3+(Gd3+),Yb3+,Nd3+ Nanoparticles as a Multimodal Contrast Agent for Down- and Upconversion Luminescence, Magnetic Resonance Imaging, and Computed Tomography. Shapoval O, Oleksa V, Šlouf M, Lobaz V, Trhlíková O, Filipová M, Janoušková O, Engstová H, Pankrác J, Modrý A, Herynek V, Ježek P, Šefc L, Horák D. Nanomaterials (Basel); 2021 Jan 16; 11(1):. PubMed ID: 33467188 [Abstract] [Full Text] [Related]
58. Targeted dual-contrast T1- and T2-weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles. Yang H, Zhuang Y, Sun Y, Dai A, Shi X, Wu D, Li F, Hu H, Yang S. Biomaterials; 2011 Jul 16; 32(20):4584-93. PubMed ID: 21458063 [Abstract] [Full Text] [Related]
60. Fabrication and Characterization of Gd-DTPA-Loaded Chitosan-Poly(Acrylic Acid) Nanoparticles for Magnetic Resonance Imaging. Ahmed A, Zhang C, Guo J, Hu Y, Jiang X. Macromol Biosci; 2015 Aug 16; 15(8):1105-14. PubMed ID: 25846258 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]