These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


299 related items for PubMed ID: 36977987

  • 1. Characterization of grain carotenoids in global sorghum germplasm to guide genomics-assisted breeding strategies.
    Cruet-Burgos C, Morris GP, Rhodes DH.
    BMC Plant Biol; 2023 Mar 28; 23(1):165. PubMed ID: 36977987
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Unraveling transcriptomics of sorghum grain carotenoids: a step forward for biofortification.
    Cruet-Burgos C, Rhodes DH.
    BMC Genomics; 2023 May 03; 24(1):233. PubMed ID: 37138226
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. A foundation for provitamin A biofortification of maize: genome-wide association and genomic prediction models of carotenoid levels.
    Owens BF, Lipka AE, Magallanes-Lundback M, Tiede T, Diepenbrock CH, Kandianis CB, Kim E, Cepela J, Mateos-Hernandez M, Buell CR, Buckler ES, DellaPenna D, Gore MA, Rocheford T.
    Genetics; 2014 Dec 03; 198(4):1699-716. PubMed ID: 25258377
    [Abstract] [Full Text] [Related]

  • 7. Status of carotenoids in elite and landrace maize genotypes: Implications for provitamin A biofortification in Tanzania.
    Msungu SD, Mushongi AA, Venkataramana PB, Mbega ER.
    Food Res Int; 2022 Jun 03; 156():111303. PubMed ID: 35651063
    [Abstract] [Full Text] [Related]

  • 8. Development of sub-tropically adapted diverse provitamin-A rich maize inbreds through marker-assisted pedigree selection, their characterization and utilization in hybrid breeding.
    Duo H, Hossain F, Muthusamy V, Zunjare RU, Goswami R, Chand G, Mishra SJ, Chhabra R, Gowda MM, Pal S, Baveja A, Bhat JS, Kamboj MC, Kumar B, Amalraj JJ, Khulbe R, Prakash B, Neeraja CN, Rakshit S, Yadav OP.
    PLoS One; 2021 Jun 03; 16(2):e0245497. PubMed ID: 33539427
    [Abstract] [Full Text] [Related]

  • 9. Genetic Loci Controlling Carotenoid Biosynthesis in Diverse Tropical Maize Lines.
    Azmach G, Menkir A, Spillane C, Gedil M.
    G3 (Bethesda); 2018 Mar 02; 8(3):1049-1065. PubMed ID: 29378820
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Genome-wide association analysis reveals new targets for carotenoid biofortification in maize.
    Suwarno WB, Pixley KV, Palacios-Rojas N, Kaeppler SM, Babu R.
    Theor Appl Genet; 2015 May 02; 128(5):851-64. PubMed ID: 25690716
    [Abstract] [Full Text] [Related]

  • 13. Genetic Variability in Carotenoid Contents in a Panel of Genebank Accessions of Temperate Maize from Southeast Europe.
    Šimić D, Galić V, Jambrović A, Ledenčan T, Kljak K, Buhiniček I, Šarčević H.
    Plants (Basel); 2023 Sep 30; 12(19):. PubMed ID: 37836193
    [Abstract] [Full Text] [Related]

  • 14. Enrichment of provitamin A content in durum wheat grain by suppressing β-carotene hydroxylase 1 genes with a TILLING approach.
    Garcia Molina MD, Botticella E, Beleggia R, Palombieri S, De Vita P, Masci S, Lafiandra D, Sestili F.
    Theor Appl Genet; 2021 Dec 30; 134(12):4013-4024. PubMed ID: 34477900
    [Abstract] [Full Text] [Related]

  • 15. Genomic prediction of zinc-biofortification potential in rice gene bank accessions.
    Rakotondramanana M, Tanaka R, Pariasca-Tanaka J, Stangoulis J, Grenier C, Wissuwa M.
    Theor Appl Genet; 2022 Jul 30; 135(7):2265-2278. PubMed ID: 35618915
    [Abstract] [Full Text] [Related]

  • 16. Bioaccessibility of carotenoids from transgenic provitamin A biofortified sorghum.
    Lipkie TE, De Moura FF, Zhao ZY, Albertsen MC, Che P, Glassman K, Ferruzzi MG.
    J Agric Food Chem; 2013 Jun 19; 61(24):5764-71. PubMed ID: 23692305
    [Abstract] [Full Text] [Related]

  • 17. Genomics-Integrated Breeding for Carotenoids and Folates in Staple Cereal Grains to Reduce Malnutrition.
    Ashokkumar K, Govindaraj M, Karthikeyan A, Shobhana VG, Warkentin TD.
    Front Genet; 2020 Jun 19; 11():414. PubMed ID: 32547594
    [Abstract] [Full Text] [Related]

  • 18. Genetic architecture of kernel composition in global sorghum germplasm.
    Rhodes DH, Hoffmann L, Rooney WL, Herald TJ, Bean S, Boyles R, Brenton ZW, Kresovich S.
    BMC Genomics; 2017 Jan 05; 18(1):15. PubMed ID: 28056770
    [Abstract] [Full Text] [Related]

  • 19. Evaluation of genetic diversity, agronomic traits, and anthracnose resistance in the NPGS Sudan Sorghum Core collection.
    Cuevas HE, Prom LK.
    BMC Genomics; 2020 Jan 28; 21(1):88. PubMed ID: 31992189
    [Abstract] [Full Text] [Related]

  • 20. Genetic variation for grain nutritional profile and yield potential in sorghum and the possibility of selection for drought tolerance under irrigated conditions.
    Kamal NM, Gorafi YSA, Tomemori H, Kim JS, Elhadi GMI, Tsujimoto H.
    BMC Genomics; 2023 Sep 02; 24(1):515. PubMed ID: 37660014
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.