These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
174 related items for PubMed ID: 37004391
21. The development and evaluation of a fully automated markerless motion capture workflow. Needham L, Evans M, Wade L, Cosker DP, McGuigan MP, Bilzon JL, Colyer SL. J Biomech; 2022 Nov; 144():111338. PubMed ID: 36252308 [Abstract] [Full Text] [Related]
22. Examination of 2D frontal and sagittal markerless motion capture: Implications for markerless applications. Wade L, Needham L, Evans M, McGuigan P, Colyer S, Cosker D, Bilzon J. PLoS One; 2023 Nov; 18(11):e0293917. PubMed ID: 37943887 [Abstract] [Full Text] [Related]
23. Application of Principal Component Analysis to Forward Reactive Stepping: Whole-body Movement Strategy Differs as a Function of Age and Sex. Armstrong DP, Pretty SP, Weaver TB, Fischer SL, Laing AC. Gait Posture; 2021 Sep; 89():38-44. PubMed ID: 34217952 [Abstract] [Full Text] [Related]
24. Inter-trial variability is higher in 3D markerless compared to marker-based motion capture: Implications for data post-processing and analysis. Horsak B, Prock K, Krondorfer P, Siragy T, Simonlehner M, Dumphart B. J Biomech; 2024 Mar; 166():112049. PubMed ID: 38493576 [Abstract] [Full Text] [Related]
25. Feasibility of using low-cost markerless motion capture for assessing functional outcomes after lower extremity musculoskeletal cancer surgery. Furtado S, Galna B, Godfrey A, Rochester L, Gerrand C. PLoS One; 2024 Mar; 19(3):e0300351. PubMed ID: 38547229 [Abstract] [Full Text] [Related]
26. Using a Markerless Motion Capture System to Identify Preinjury Differences in Functional Assessments. Laupattarakasem P, Cook JL, Stannard JP, Smith PA, Blecha KM, Guess TM, Sharp RL, Leary E. J Knee Surg; 2024 Jul; 37(8):570-576. PubMed ID: 37586406 [Abstract] [Full Text] [Related]
27. Dual Kinect v2 system can capture lower limb kinematics reasonably well in a clinical setting: concurrent validity of a dual camera markerless motion capture system in professional football players. Kotsifaki A, Whiteley R, Hansen C. BMJ Open Sport Exerc Med; 2018 Jul; 4(1):e000441. PubMed ID: 30622729 [Abstract] [Full Text] [Related]
28. Comparison of kinematics and joint moments calculations for lower limbs during gait using markerless and marker-based motion capture. Huang T, Ruan M, Huang S, Fan L, Wu X. Front Bioeng Biotechnol; 2024 Jul; 12():1280363. PubMed ID: 38532880 [Abstract] [Full Text] [Related]
29. Automated Quantification of the Landing Error Scoring System With a Markerless Motion-Capture System. Mauntel TC, Padua DA, Stanley LE, Frank BS, DiStefano LJ, Peck KY, Cameron KL, Marshall SW. J Athl Train; 2017 Nov; 52(11):1002-1009. PubMed ID: 29048200 [Abstract] [Full Text] [Related]
31. The influence of task type and movement speed on lower limb kinematics during single-leg tasks. Rabello R, Bertozzi F, Brunetti C, Silva Zandonato L, Bonotti A, Rodrigues R, Sforza C. Gait Posture; 2022 Jul; 96():109-116. PubMed ID: 35635986 [Abstract] [Full Text] [Related]
33. Inter-session repeatability of markerless motion capture gait kinematics. Kanko RM, Laende E, Selbie WS, Deluzio KJ. J Biomech; 2021 May 24; 121():110422. PubMed ID: 33873117 [Abstract] [Full Text] [Related]
34. Single-Joint and Whole-Body Movement Changes in Anterior Cruciate Ligament Athletes Returning to Sport. Smeets A, Verheul J, Vanrenterghem J, Staes F, Vandenneucker H, Claes S, Verschueren S. Med Sci Sports Exerc; 2020 Aug 24; 52(8):1658-1667. PubMed ID: 32079913 [Abstract] [Full Text] [Related]
35. How does lower limb dominance influence postural control movements during single leg stance? Promsri A, Haid T, Federolf P. Hum Mov Sci; 2018 Apr 24; 58():165-174. PubMed ID: 29448161 [Abstract] [Full Text] [Related]
36. A comparison of three-dimensional kinematics between markerless and marker-based motion capture in overground gait. Ripic Z, Nienhuis M, Signorile JF, Best TM, Jacobs KA, Eltoukhy M. J Biomech; 2023 Oct 24; 159():111793. PubMed ID: 37725886 [Abstract] [Full Text] [Related]
37. TWO-DIMENSIONAL VIDEO ANALYSIS IS COMPARABLE TO 3D MOTION CAPTURE IN LOWER EXTREMITY MOVEMENT ASSESSMENT. Schurr SA, Marshall AN, Resch JE, Saliba SA. Int J Sports Phys Ther; 2017 Apr 24; 12(2):163-172. PubMed ID: 28515970 [Abstract] [Full Text] [Related]
38. Moving outside the lab: Markerless motion capture accurately quantifies sagittal plane kinematics during the vertical jump. Drazan JF, Phillips WT, Seethapathi N, Hullfish TJ, Baxter JR. J Biomech; 2021 Aug 26; 125():110547. PubMed ID: 34175570 [Abstract] [Full Text] [Related]
39. Artificial Intelligence-Assisted motion capture for medical applications: a comparative study between markerless and passive marker motion capture. Takeda I, Yamada A, Onodera H. Comput Methods Biomech Biomed Engin; 2021 Jun 26; 24(8):864-873. PubMed ID: 33290107 [Abstract] [Full Text] [Related]
40. Applications of markerless motion capture in gait recognition. Sandau M. Dan Med J; 2016 Mar 26; 63(3):. PubMed ID: 26931198 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]