These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


187 related items for PubMed ID: 37004723

  • 21. Active compensation for changes in TDH3 expression mediated by direct regulators of TDH3 in Saccharomyces cerevisiae.
    Vande Zande P, Siddiq MA, Hodgins-Davis A, Kim L, Wittkopp PJ.
    PLoS Genet; 2023 Dec; 19(12):e1011078. PubMed ID: 38091349
    [Abstract] [Full Text] [Related]

  • 22. Natural sequence variants of yeast environmental sensors confer cell-to-cell expression variability.
    Fehrmann S, Bottin-Duplus H, Leonidou A, Mollereau E, Barthelaix A, Wei W, Steinmetz LM, Yvert G.
    Mol Syst Biol; 2013 Oct 08; 9():695. PubMed ID: 24104478
    [Abstract] [Full Text] [Related]

  • 23. Effects of cis and trans regulatory variations on the expression divergence of heat shock response genes between yeast strains.
    Li CM, Tzeng JN, Sung HM.
    Gene; 2012 Sep 10; 506(1):93-7. PubMed ID: 22759523
    [Abstract] [Full Text] [Related]

  • 24. Sleuthing the difference a nucleotide can make.
    Townsend JP.
    Mol Ecol; 2008 Jun 10; 17(12):2793-5. PubMed ID: 18565029
    [Abstract] [Full Text] [Related]

  • 25. Polymorphism, divergence, and the role of recombination in Saccharomyces cerevisiae genome evolution.
    Cutter AD, Moses AM.
    Mol Biol Evol; 2011 May 10; 28(5):1745-54. PubMed ID: 21199893
    [Abstract] [Full Text] [Related]

  • 26. Incipient balancing selection through adaptive loss of aquaporins in natural Saccharomyces cerevisiae populations.
    Will JL, Kim HS, Clarke J, Painter JC, Fay JC, Gasch AP.
    PLoS Genet; 2010 Apr 01; 6(4):e1000893. PubMed ID: 20369021
    [Abstract] [Full Text] [Related]

  • 27. Natural selection on cis and trans regulation in yeasts.
    Emerson JJ, Hsieh LC, Sung HM, Wang TY, Huang CJ, Lu HH, Lu MY, Wu SH, Li WH.
    Genome Res; 2010 Jun 01; 20(6):826-36. PubMed ID: 20445163
    [Abstract] [Full Text] [Related]

  • 28. Fitness variation across subtle environmental perturbations reveals local modularity and global pleiotropy of adaptation.
    Kinsler G, Geiler-Samerotte K, Petrov DA.
    Elife; 2020 Dec 02; 9():. PubMed ID: 33263280
    [Abstract] [Full Text] [Related]

  • 29. The molecular mechanism of a cis-regulatory adaptation in yeast.
    Chang J, Zhou Y, Hu X, Lam L, Henry C, Green EM, Kita R, Kobor MS, Fraser HB.
    PLoS Genet; 2013 Dec 02; 9(9):e1003813. PubMed ID: 24068973
    [Abstract] [Full Text] [Related]

  • 30. Genetic analysis of variation in transcription factor binding in yeast.
    Zheng W, Zhao H, Mancera E, Steinmetz LM, Snyder M.
    Nature; 2010 Apr 22; 464(7292):1187-91. PubMed ID: 20237471
    [Abstract] [Full Text] [Related]

  • 31. Mapping small effect mutations in Saccharomyces cerevisiae: impacts of experimental design and mutational properties.
    Duveau F, Metzger BP, Gruber JD, Mack K, Sood N, Brooks TE, Wittkopp PJ.
    G3 (Bethesda); 2014 Apr 29; 4(7):1205-16. PubMed ID: 24789747
    [Abstract] [Full Text] [Related]

  • 32. Mechanisms of regulatory evolution in yeast.
    Siddiq MA, Wittkopp PJ.
    Curr Opin Genet Dev; 2022 Dec 29; 77():101998. PubMed ID: 36220001
    [Abstract] [Full Text] [Related]

  • 33. Comprehensive Analysis of the SUL1 Promoter of Saccharomyces cerevisiae.
    Rich MS, Payen C, Rubin AF, Ong GT, Sanchez MR, Yachie N, Dunham MJ, Fields S.
    Genetics; 2016 May 29; 203(1):191-202. PubMed ID: 26936925
    [Abstract] [Full Text] [Related]

  • 34. Chromatin regulation and gene centrality are essential for controlling fitness pleiotropy in yeast.
    Zhou L, Ma X, Arbeitman MN, Sun F.
    PLoS One; 2009 Nov 30; 4(11):e8086. PubMed ID: 19956643
    [Abstract] [Full Text] [Related]

  • 35. The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast.
    Gresham D, Desai MM, Tucker CM, Jenq HT, Pai DA, Ward A, DeSevo CG, Botstein D, Dunham MJ.
    PLoS Genet; 2008 Dec 30; 4(12):e1000303. PubMed ID: 19079573
    [Abstract] [Full Text] [Related]

  • 36. Molecular and evolutionary processes generating variation in gene expression.
    Hill MS, Vande Zande P, Wittkopp PJ.
    Nat Rev Genet; 2021 Apr 30; 22(4):203-215. PubMed ID: 33268840
    [Abstract] [Full Text] [Related]

  • 37. Phenotypic and genotypic convergences are influenced by historical contingency and environment in yeast.
    Spor A, Kvitek DJ, Nidelet T, Martin J, Legrand J, Dillmann C, Bourgais A, de Vienne D, Sherlock G, Sicard D.
    Evolution; 2014 Mar 30; 68(3):772-790. PubMed ID: 24164389
    [Abstract] [Full Text] [Related]

  • 38. Differential paralog divergence modulates genome evolution across yeast species.
    Sanchez MR, Miller AW, Liachko I, Sunshine AB, Lynch B, Huang M, Alcantara E, DeSevo CG, Pai DA, Tucker CM, Hoang ML, Dunham MJ.
    PLoS Genet; 2017 Feb 30; 13(2):e1006585. PubMed ID: 28196070
    [Abstract] [Full Text] [Related]

  • 39. A modified fluctuation assay reveals a natural mutator phenotype that drives mutation spectrum variation within Saccharomyces cerevisiae.
    Jiang P, Ollodart AR, Sudhesh V, Herr AJ, Dunham MJ, Harris K.
    Elife; 2021 Sep 15; 10():. PubMed ID: 34523420
    [Abstract] [Full Text] [Related]

  • 40. Natural variation in non-coding regions underlying phenotypic diversity in budding yeast.
    Salinas F, de Boer CG, Abarca V, García V, Cuevas M, Araos S, Larrondo LF, Martínez C, Cubillos FA.
    Sci Rep; 2016 Feb 22; 6():21849. PubMed ID: 26898953
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.