These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


203 related items for PubMed ID: 37007603

  • 1. CRISPR-Cas9-mediated knockout of CYP79D1 and CYP79D2 in cassava attenuates toxic cyanogen production.
    Gomez MA, Berkoff KC, Gill BK, Iavarone AT, Lieberman SE, Ma JM, Schultink A, Karavolias NG, Wyman SK, Chauhan RD, Taylor NJ, Staskawicz BJ, Cho MJ, Rokhsar DS, Lyons JB.
    Front Plant Sci; 2022; 13():1079254. PubMed ID: 37007603
    [Abstract] [Full Text] [Related]

  • 2. Engineering cyanogen synthesis and turnover in cassava (Manihot esculenta).
    Siritunga D, Sayre R.
    Plant Mol Biol; 2004 Nov; 56(4):661-9. PubMed ID: 15630626
    [Abstract] [Full Text] [Related]

  • 3. Generation of cyanogen-free transgenic cassava.
    Siritunga D, Sayre RT.
    Planta; 2003 Jul; 217(3):367-73. PubMed ID: 14520563
    [Abstract] [Full Text] [Related]

  • 4. Targeted mutagenesis of the CYP79D1 gene via CRISPR/Cas9-mediated genome editing results in lower levels of cyanide in cassava.
    Juma BS, Mukami A, Mweu C, Ngugi MP, Mbinda W.
    Front Plant Sci; 2022 Jul; 13():1009860. PubMed ID: 36388608
    [Abstract] [Full Text] [Related]

  • 5. Cytochromes P-450 from cassava (Manihot esculenta Crantz) catalyzing the first steps in the biosynthesis of the cyanogenic glucosides linamarin and lotaustralin. Cloning, functional expression in Pichia pastoris, and substrate specificity of the isolated recombinant enzymes.
    Andersen MD, Busk PK, Svendsen I, Møller BL.
    J Biol Chem; 2000 Jan 21; 275(3):1966-75. PubMed ID: 10636899
    [Abstract] [Full Text] [Related]

  • 6. Editing of the starch branching enzyme gene SBE2 generates high-amylose storage roots in cassava.
    Luo S, Ma Q, Zhong Y, Jing J, Wei Z, Zhou W, Lu X, Tian Y, Zhang P.
    Plant Mol Biol; 2022 Mar 21; 108(4-5):429-442. PubMed ID: 34792751
    [Abstract] [Full Text] [Related]

  • 7. Transgenic approaches for cyanogen reduction in cassava.
    Siritunga D, Sayre R.
    J AOAC Int; 2007 Mar 21; 90(5):1450-5. PubMed ID: 17955993
    [Abstract] [Full Text] [Related]

  • 8. Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology.
    Jørgensen K, Bak S, Busk PK, Sørensen C, Olsen CE, Puonti-Kaerlas J, Møller BL.
    Plant Physiol; 2005 Sep 21; 139(1):363-74. PubMed ID: 16126856
    [Abstract] [Full Text] [Related]

  • 9. Biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in cassava: isolation, biochemical characterization, and expression pattern of CYP71E7, the oxime-metabolizing cytochrome P450 enzyme.
    Jørgensen K, Morant AV, Morant M, Jensen NB, Olsen CE, Kannangara R, Motawia MS, Møller BL, Bak S.
    Plant Physiol; 2011 Jan 21; 155(1):282-92. PubMed ID: 21045121
    [Abstract] [Full Text] [Related]

  • 10. Large-scale genome-wide association study, using historical data, identifies conserved genetic architecture of cyanogenic glucoside content in cassava (Manihot esculenta Crantz) root.
    Ogbonna AC, Braatz de Andrade LR, Rabbi IY, Mueller LA, Jorge de Oliveira E, Bauchet GJ.
    Plant J; 2021 Feb 21; 105(3):754-770. PubMed ID: 33164279
    [Abstract] [Full Text] [Related]

  • 11. Cyanogen Metabolism in Cassava Roots: Impact on Protein Synthesis and Root Development.
    Zidenga T, Siritunga D, Sayre RT.
    Front Plant Sci; 2017 Feb 21; 8():220. PubMed ID: 28286506
    [Abstract] [Full Text] [Related]

  • 12. Efficient CRISPR/Cas9 Genome Editing of Phytoene desaturase in Cassava.
    Odipio J, Alicai T, Ingelbrecht I, Nusinow DA, Bart R, Taylor NJ.
    Front Plant Sci; 2017 Feb 21; 8():1780. PubMed ID: 29093724
    [Abstract] [Full Text] [Related]

  • 13. Cassava biology and physiology.
    El-Sharkawy MA.
    Plant Mol Biol; 2004 Nov 21; 56(4):481-501. PubMed ID: 15669146
    [Abstract] [Full Text] [Related]

  • 14. Overexpression of hydroxynitrile lyase in cassava roots elevates protein and free amino acids while reducing residual cyanogen levels.
    Narayanan NN, Ihemere U, Ellery C, Sayre RT.
    PLoS One; 2011 Nov 21; 6(7):e21996. PubMed ID: 21799761
    [Abstract] [Full Text] [Related]

  • 15. Current knowledge and future research perspectives on cassava (Manihot esculenta Crantz) chemical defenses: An agroecological view.
    Pinto-Zevallos DM, Pareja M, Ambrogi BG.
    Phytochemistry; 2016 Oct 21; 130():10-21. PubMed ID: 27316676
    [Abstract] [Full Text] [Related]

  • 16. Cyanogenesis in cassava. The role of hydroxynitrile lyase in root cyanide production.
    White WLB, Arias-Garzon DI, McMahon JM, Sayre RT.
    Plant Physiol; 1998 Apr 21; 116(4):1219-25. PubMed ID: 9536038
    [Abstract] [Full Text] [Related]

  • 17. Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
    Gleadow R, Pegg A, Blomstedt CK.
    J Exp Bot; 2016 Oct 21; 67(18):5403-5413. PubMed ID: 27506218
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Cyanide detoxification in cassava for food and feed uses.
    Padmaja G.
    Crit Rev Food Sci Nutr; 1995 Jul 21; 35(4):299-339. PubMed ID: 7576161
    [Abstract] [Full Text] [Related]

  • 20. Toxic effects of prolonged administration of leaves of cassava (Manihot esculenta Crantz) to goats.
    Soto-Blanco B, Górniak SL.
    Exp Toxicol Pathol; 2010 Jul 21; 62(4):361-6. PubMed ID: 19559583
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.