These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
205 related items for PubMed ID: 37014051
21. Evolutionarily divergent, unstable filamentous actin is essential for gliding motility in apicomplexan parasites. Skillman KM, Diraviyam K, Khan A, Tang K, Sept D, Sibley LD. PLoS Pathog; 2011 Oct; 7(10):e1002280. PubMed ID: 21998582 [Abstract] [Full Text] [Related]
22. Structural role of essential light chains in the apicomplexan glideosome. Pazicky S, Dhamotharan K, Kaszuba K, Mertens HDT, Gilberger T, Svergun D, Kosinski J, Weininger U, Löw C. Commun Biol; 2020 Oct 13; 3(1):568. PubMed ID: 33051581 [Abstract] [Full Text] [Related]
23. A dibasic motif in the tail of a class XIV apicomplexan myosin is an essential determinant of plasma membrane localization. Hettmann C, Herm A, Geiter A, Frank B, Schwarz E, Soldati T, Soldati D. Mol Biol Cell; 2000 Apr 13; 11(4):1385-400. PubMed ID: 10749937 [Abstract] [Full Text] [Related]
24. 'The glideosome': a dynamic complex powering gliding motion and host cell invasion by Toxoplasma gondii. Opitz C, Soldati D. Mol Microbiol; 2002 Aug 13; 45(3):597-604. PubMed ID: 12139608 [Abstract] [Full Text] [Related]
25. The Conoid Associated Motor MyoH Is Indispensable for Toxoplasma gondii Entry and Exit from Host Cells. Graindorge A, Frénal K, Jacot D, Salamun J, Marq JB, Soldati-Favre D. PLoS Pathog; 2016 Jan 13; 12(1):e1005388. PubMed ID: 26760042 [Abstract] [Full Text] [Related]
26. How apicomplexan parasites move in and out of cells. Sibley LD. Curr Opin Biotechnol; 2010 Oct 13; 21(5):592-8. PubMed ID: 20580218 [Abstract] [Full Text] [Related]
27. Coupling Polar Adhesion with Traction, Spring, and Torque Forces Allows High-Speed Helical Migration of the Protozoan Parasite Toxoplasma. Pavlou G, Touquet B, Vigetti L, Renesto P, Bougdour A, Debarre D, Balland M, Tardieux I. ACS Nano; 2020 Jun 23; 14(6):7121-7139. PubMed ID: 32432851 [Abstract] [Full Text] [Related]
28. The Actomyosin Systems in Apicomplexa. Frénal K, Krishnan A, Soldati-Favre D. Adv Exp Med Biol; 2020 Jun 23; 1239():331-354. PubMed ID: 32451865 [Abstract] [Full Text] [Related]
29. Mechanisms controlling glideosome function in apicomplexans. Daher W, Soldati-Favre D. Curr Opin Microbiol; 2009 Aug 23; 12(4):408-14. PubMed ID: 19577950 [Abstract] [Full Text] [Related]
32. The role of the cytoskeleton in host cell invasion by Toxoplasma gondii. Dobrowolski J, Sibley LD. Behring Inst Mitt; 1997 Mar 23; (99):90-6. PubMed ID: 9303207 [Abstract] [Full Text] [Related]
33. Genetic impairment of parasite myosin motors uncovers the contribution of host cell membrane dynamics to Toxoplasma invasion forces. Bichet M, Touquet B, Gonzalez V, Florent I, Meissner M, Tardieux I. BMC Biol; 2016 Nov 09; 14(1):97. PubMed ID: 27829452 [Abstract] [Full Text] [Related]
34. Assessment of phosphorylation in Toxoplasma glideosome assembly and function. Jacot D, Frénal K, Marq JB, Sharma P, Soldati-Favre D. Cell Microbiol; 2014 Oct 09; 16(10):1518-32. PubMed ID: 24779470 [Abstract] [Full Text] [Related]
35. The glideosome: a molecular machine powering motility and host-cell invasion by Apicomplexa. Keeley A, Soldati D. Trends Cell Biol; 2004 Oct 09; 14(10):528-32. PubMed ID: 15450974 [Abstract] [Full Text] [Related]
36. Structural and mechanistic insights into the function of the unconventional class XIV myosin MyoA from Toxoplasma gondii. Powell CJ, Ramaswamy R, Kelsen A, Hamelin DJ, Warshaw DM, Bosch J, Burke JE, Ward GE, Boulanger MJ. Proc Natl Acad Sci U S A; 2018 Nov 06; 115(45):E10548-E10555. PubMed ID: 30348763 [Abstract] [Full Text] [Related]