These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes. Lu JX, Damodaran K, Blazyk J, Lorigan GA. Biochemistry; 2005 Aug 02; 44(30):10208-17. PubMed ID: 16042398 [Abstract] [Full Text] [Related]
5. Molecular interactions between magainin 2 and model membranes in situ. Nguyen KT, Le Clair SV, Ye S, Chen Z. J Phys Chem B; 2009 Sep 10; 113(36):12358-63. PubMed ID: 19728722 [Abstract] [Full Text] [Related]
6. The importance of bacterial membrane composition in the structure and function of aurein 2.2 and selected variants. Cheng JT, Hale JD, Elliott M, Hancock RE, Straus SK. Biochim Biophys Acta; 2011 Mar 10; 1808(3):622-33. PubMed ID: 21144817 [Abstract] [Full Text] [Related]
7. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides. Tsai CW, Hsu NY, Wang CH, Lu CY, Chang Y, Tsai HH, Ruaan RC. J Mol Biol; 2009 Sep 25; 392(3):837-54. PubMed ID: 19576903 [Abstract] [Full Text] [Related]
11. Immobilization reduces the activity of surface-bound cationic antimicrobial peptides with no influence upon the activity spectrum. Bagheri M, Beyermann M, Dathe M. Antimicrob Agents Chemother; 2009 Mar 25; 53(3):1132-41. PubMed ID: 19104020 [Abstract] [Full Text] [Related]
12. Orientation of a beta-hairpin antimicrobial peptide in lipid bilayers from two-dimensional dipolar chemical-shift correlation NMR. Tang M, Waring AJ, Lehrer RI, Hong M. Biophys J; 2006 May 15; 90(10):3616-24. PubMed ID: 16500957 [Abstract] [Full Text] [Related]
13. Observing a model ion channel gating action in model cell membranes in real time in situ: membrane potential change induced alamethicin orientation change. Ye S, Li H, Wei F, Jasensky J, Boughton AP, Yang P, Chen Z. J Am Chem Soc; 2012 Apr 11; 134(14):6237-43. PubMed ID: 22420296 [Abstract] [Full Text] [Related]
14. Molecular interactions between cell penetrating peptide Pep-1 and model cell membranes. Ding B, Chen Z. J Phys Chem B; 2012 Mar 01; 116(8):2545-52. PubMed ID: 22292835 [Abstract] [Full Text] [Related]
15. Limiting an antimicrobial peptide to the lipid-water interface enhances its bacterial membrane selectivity: a case study of MSI-367. Thennarasu S, Huang R, Lee DK, Yang P, Maloy L, Chen Z, Ramamoorthy A. Biochemistry; 2010 Dec 21; 49(50):10595-605. PubMed ID: 21062093 [Abstract] [Full Text] [Related]
16. Molecular dynamics simulation of the membrane binding and disruption mechanisms by antimicrobial scorpion venom-derived peptides. Velasco-Bolom JL, Corzo G, Garduño-Juárez R. J Biomol Struct Dyn; 2018 Jun 21; 36(8):2070-2084. PubMed ID: 28604248 [Abstract] [Full Text] [Related]
19. Membrane-dependent oligomeric structure and pore formation of a beta-hairpin antimicrobial peptide in lipid bilayers from solid-state NMR. Mani R, Cady SD, Tang M, Waring AJ, Lehrer RI, Hong M. Proc Natl Acad Sci U S A; 2006 Oct 31; 103(44):16242-7. PubMed ID: 17060626 [Abstract] [Full Text] [Related]