These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Solid-state NMR investigations of peptide-lipid interaction and orientation of a beta-sheet antimicrobial peptide, protegrin. Yamaguchi S, Hong T, Waring A, Lehrer RI, Hong M. Biochemistry; 2002 Aug 06; 41(31):9852-62. PubMed ID: 12146951 [Abstract] [Full Text] [Related]
23. Membrane interaction of antimicrobial peptides using E. coli lipid extract as model bacterial cell membranes and SFG spectroscopy. Soblosky L, Ramamoorthy A, Chen Z. Chem Phys Lipids; 2015 Apr 06; 187():20-33. PubMed ID: 25707312 [Abstract] [Full Text] [Related]
24. MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain. Hallock KJ, Lee DK, Ramamoorthy A. Biophys J; 2003 May 06; 84(5):3052-60. PubMed ID: 12719236 [Abstract] [Full Text] [Related]
25. pH-Dependent Membrane Interactions of the Histidine-Rich Cell-Penetrating Peptide LAH4-L1. Wolf J, Aisenbrey C, Harmouche N, Raya J, Bertani P, Voievoda N, Süss R, Bechinger B. Biophys J; 2017 Sep 19; 113(6):1290-1300. PubMed ID: 28734478 [Abstract] [Full Text] [Related]
26. Solid-state NMR investigation of the membrane-disrupting mechanism of antimicrobial peptides MSI-78 and MSI-594 derived from magainin 2 and melittin. Ramamoorthy A, Thennarasu S, Lee DK, Tan A, Maloy L. Biophys J; 2006 Jul 01; 91(1):206-16. PubMed ID: 16603496 [Abstract] [Full Text] [Related]
27. Revealing the Mode of Action of Halictine Antimicrobial Peptides: A Comprehensive Study with Model Membranes. Domingues TM, Perez KR, Riske KA. Langmuir; 2020 May 19; 36(19):5145-5155. PubMed ID: 32336099 [Abstract] [Full Text] [Related]
28. Comparative molecular dynamics simulations of the antimicrobial peptide CM15 in model lipid bilayers. Wang Y, Schlamadinger DE, Kim JE, McCammon JA. Biochim Biophys Acta; 2012 May 19; 1818(5):1402-9. PubMed ID: 22387432 [Abstract] [Full Text] [Related]
29. Morphological changes induced by the action of antimicrobial peptides on supported lipid bilayers. Arouri A, Kiessling V, Tamm L, Dathe M, Blume A. J Phys Chem B; 2011 Jan 13; 115(1):158-67. PubMed ID: 21158379 [Abstract] [Full Text] [Related]
30. Differential scanning calorimetry and (2)H nuclear magnetic resonance and Fourier transform infrared spectroscopy studies of the effects of transmembrane alpha-helical peptides on the organization of phosphatidylcholine bilayers. Paré C, Lafleur M, Liu F, Lewis RN, McElhaney RN. Biochim Biophys Acta; 2001 Mar 09; 1511(1):60-73. PubMed ID: 11248205 [Abstract] [Full Text] [Related]
31. Interactions of the antimicrobial peptide Ac-FRWWHR-NH(2) with model membrane systems and bacterial cells. Rezansoff AJ, Hunter HN, Jing W, Park IY, Kim SC, Vogel HJ. J Pept Res; 2005 May 09; 65(5):491-501. PubMed ID: 15853943 [Abstract] [Full Text] [Related]
32. Insight into the interactions, residue snorkeling, and membrane disordering potency of a single antimicrobial peptide into different lipid bilayers. Jafari M, Mehrnejad F, Doustdar F. PLoS One; 2017 May 09; 12(11):e0187216. PubMed ID: 29125878 [Abstract] [Full Text] [Related]
33. Binding and insertion of alpha-helical anti-microbial peptides in POPC bilayers studied by molecular dynamics simulations. Kandasamy SK, Larson RG. Chem Phys Lipids; 2004 Nov 09; 132(1):113-32. PubMed ID: 15530453 [Abstract] [Full Text] [Related]
34. Interactions of alamethicin with model cell membranes investigated using sum frequency generation vibrational spectroscopy in real time in situ. Ye S, Nguyen KT, Chen Z. J Phys Chem B; 2010 Mar 11; 114(9):3334-40. PubMed ID: 20163089 [Abstract] [Full Text] [Related]
35. Perturbation of the hydrophobic core of lipid bilayers by the human antimicrobial peptide LL-37. Henzler-Wildman KA, Martinez GV, Brown MF, Ramamoorthy A. Biochemistry; 2004 Jul 06; 43(26):8459-69. PubMed ID: 15222757 [Abstract] [Full Text] [Related]
36. Solid-state NMR investigation of the selective perturbation of lipid bilayers by the cyclic antimicrobial peptide RTD-1. Buffy JJ, McCormick MJ, Wi S, Waring A, Lehrer RI, Hong M. Biochemistry; 2004 Aug 03; 43(30):9800-12. PubMed ID: 15274634 [Abstract] [Full Text] [Related]
37. Antimicrobial and membrane disrupting activities of a peptide derived from the human cathelicidin antimicrobial peptide LL37. Thennarasu S, Tan A, Penumatchu R, Shelburne CE, Heyl DL, Ramamoorthy A. Biophys J; 2010 Jan 20; 98(2):248-57. PubMed ID: 20338846 [Abstract] [Full Text] [Related]
38. Antimicrobial activity and interactions of cationic peptides derived from Galleria mellonella cecropin D-like peptide with model membranes. Oñate-Garzón J, Manrique-Moreno M, Trier S, Leidy C, Torres R, Patiño E. J Antibiot (Tokyo); 2017 Mar 20; 70(3):238-245. PubMed ID: 27999446 [Abstract] [Full Text] [Related]
39. Membrane Interactions of hIAPP Monomer and Oligomer with Lipid Membranes by Molecular Dynamics Simulations. Zhang M, Ren B, Liu Y, Liang G, Sun Y, Xu L, Zheng J. ACS Chem Neurosci; 2017 Aug 16; 8(8):1789-1800. PubMed ID: 28585804 [Abstract] [Full Text] [Related]
40. Interaction of phosphatidylserine synthase from E. coli with lipid bilayers: coupled plasmon-waveguide resonance spectroscopy studies. Salamon Z, Lindblom G, Rilfors L, Linde K, Tollin G. Biophys J; 2000 Mar 16; 78(3):1400-12. PubMed ID: 10692325 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]