These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


193 related items for PubMed ID: 37028528

  • 1. Combinatorial metabolic engineering and process optimization enables highly efficient production of L-lactic acid by acid-tolerant Saccharomyces cerevisiae.
    Liu T, Sun L, Zhang C, Liu Y, Li J, Du G, Lv X, Liu L.
    Bioresour Technol; 2023 Jul; 379():129023. PubMed ID: 37028528
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Improvement of d-Lactic Acid Production in Saccharomyces cerevisiae Under Acidic Conditions by Evolutionary and Rational Metabolic Engineering.
    Baek SH, Kwon EY, Bae SJ, Cho BR, Kim SY, Hahn JS.
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28731533
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. l-Lactic Acid Production via Sustainable Neutralizer-Free Route by Engineering Acid-Tolerant Yeast Pichia kudriavzevii.
    Zhang B, Li R, Yu L, Wu C, Liu Z, Bai F, Yu B, Wang L.
    J Agric Food Chem; 2023 Jul 26; 71(29):11131-11140. PubMed ID: 37439413
    [Abstract] [Full Text] [Related]

  • 8. Efficient Synthesis of Limonene in Saccharomyces cerevisiae Using Combinatorial Metabolic Engineering Strategies.
    Kong X, Wu Y, Yu W, Liu Y, Li J, Du G, Lv X, Liu L.
    J Agric Food Chem; 2023 May 24; 71(20):7752-7764. PubMed ID: 37189018
    [Abstract] [Full Text] [Related]

  • 9. Engineering cellular redox balance in Saccharomyces cerevisiae for improved production of L-lactic acid.
    Lee JY, Kang CD, Lee SH, Park YK, Cho KM.
    Biotechnol Bioeng; 2015 Apr 24; 112(4):751-8. PubMed ID: 25363674
    [Abstract] [Full Text] [Related]

  • 10. Efficient Production of Glucaric Acid by Engineered Saccharomyces cerevisiae.
    Zhao Y, Zuo F, Shu Q, Yang X, Deng Y.
    Appl Environ Microbiol; 2023 Jun 28; 89(6):e0053523. PubMed ID: 37212714
    [Abstract] [Full Text] [Related]

  • 11. Systematic engineering of Saccharomyces cerevisiae for D-lactic acid production with near theoretical yield.
    Watcharawipas A, Sae-Tang K, Sansatchanon K, Sudying P, Boonchoo K, Tanapongpipat S, Kocharin K, Runguphan W.
    FEMS Yeast Res; 2021 Apr 28; 21(4):. PubMed ID: 33856451
    [Abstract] [Full Text] [Related]

  • 12. Engineering Saccharomyces cerevisiae YPH499 for Overproduction of Geranylgeraniol.
    Wang J, Li Y, Jiang W, Hu J, Gu Z, Xu S, Zhang L, Ding Z, Chen W, Shi G.
    J Agric Food Chem; 2023 Jun 28; 71(25):9804-9814. PubMed ID: 37311098
    [Abstract] [Full Text] [Related]

  • 13. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.
    Kildegaard KR, Jensen NB, Schneider K, Czarnotta E, Özdemir E, Klein T, Maury J, Ebert BE, Christensen HB, Chen Y, Kim IK, Herrgård MJ, Blank LM, Forster J, Nielsen J, Borodina I.
    Microb Cell Fact; 2016 Mar 15; 15():53. PubMed ID: 26980206
    [Abstract] [Full Text] [Related]

  • 14. Systematic Metabolic Engineering of Saccharomyces cerevisiae for Lycopene Overproduction.
    Shi B, Ma T, Ye Z, Li X, Huang Y, Zhou Z, Ding Y, Deng Z, Liu T.
    J Agric Food Chem; 2019 Oct 09; 67(40):11148-11157. PubMed ID: 31532654
    [Abstract] [Full Text] [Related]

  • 15. Enhanced d-lactic acid production by recombinant Saccharomyces cerevisiae following optimization of the global metabolic pathway.
    Yamada R, Wakita K, Mitsui R, Ogino H.
    Biotechnol Bioeng; 2017 Sep 09; 114(9):2075-2084. PubMed ID: 28475210
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Highly efficient neutralizer-free l-malic acid production using engineered Saccharomyces cerevisiae.
    Sun L, Zhang Q, Kong X, Liu Y, Li J, Du G, Lv X, Ledesma-Amaro R, Chen J, Liu L.
    Bioresour Technol; 2023 Feb 09; 370():128580. PubMed ID: 36608859
    [Abstract] [Full Text] [Related]

  • 20. Metabolic Engineering of Saccharomyces cerevisiae for High-Level Production of l-Pipecolic Acid from Glucose.
    Kang Y, Xiao K, Wang D, Peng Z, Luo R, Liu X, Hu L, Hu G.
    ACS Synth Biol; 2024 Oct 18; 13(10):3378-3388. PubMed ID: 39267441
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.