These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
187 related items for PubMed ID: 37046250
1. Characterization of newly isolated thermotolerant bacterium Cupriavidus sp. CB15 from composting and its ability to produce polyhydroxyalkanoate from glycerol. Yootoum A, Jantanasakulwong K, Rachtanapun P, Moukamnerd C, Chaiyaso T, Pumas C, Tanadchangsaeng N, Watanabe M, Fukui T, Insomphun C. Microb Cell Fact; 2023 Apr 12; 22(1):68. PubMed ID: 37046250 [Abstract] [Full Text] [Related]
2. Identification of a new polyhydroxyalkanoate (PHA) producer Aquitalea sp. USM4 (JCM 19919) and characterization of its PHA synthase. Ng LM, Sudesh K. J Biosci Bioeng; 2016 Nov 12; 122(5):550-557. PubMed ID: 27132174 [Abstract] [Full Text] [Related]
3. Polyhydroxyalkanoate synthesis based on glycerol and implementation of the process under conditions of pilot production. Volova T, Demidenko A, Kiselev E, Baranovskiy S, Shishatskaya E, Zhila N. Appl Microbiol Biotechnol; 2019 Jan 12; 103(1):225-237. PubMed ID: 30367183 [Abstract] [Full Text] [Related]
4. Enhanced production of polyhydroxyalkanoate with manipulable and reproducible 3-hydroxyvalerate fraction by high alcohol tolerant Cupriavidus malaysiensis USMAA2-4 transformant. Wong HSJ, Azami NA, Amirul AA. Bioprocess Biosyst Eng; 2022 Aug 12; 45(8):1331-1347. PubMed ID: 35792928 [Abstract] [Full Text] [Related]
5. Evaluation of different nutrient limitation strategies for the efficient production of poly(hydroxybutyrate-co-hydroxyvalerate) from waste frying oil and propionic acid in high cell density fermentations of Cupriavidus necator H16. Kökpınar Ö, Altun M. Prep Biochem Biotechnol; 2023 Aug 12; 53(5):532-541. PubMed ID: 36007876 [Abstract] [Full Text] [Related]
6. Enhancing polyhydroxyalkanoate production in Cupriavidus sp. L7L through wcaJ gene deletion. Sheu DS, Chen JL, Sheu SY, Jane WN. Int J Biol Macromol; 2023 Dec 31; 253(Pt 8):127439. PubMed ID: 37848111 [Abstract] [Full Text] [Related]
9. Mutations derived from the thermophilic polyhydroxyalkanoate synthase PhaC enhance the thermostability and activity of PhaC from Cupriavidus necator H16. Sheu DS, Chen WM, Lai YW, Chang RC. J Bacteriol; 2012 May 31; 194(10):2620-9. PubMed ID: 22408158 [Abstract] [Full Text] [Related]
10. Introducing the Newly Isolated Bacterium Aneurinibacillus sp. H1 as an Auspicious Thermophilic Producer of Various Polyhydroxyalkanoates (PHA) Copolymers-1. Isolation and Characterization of the Bacterium. Pernicova I, Novackova I, Sedlacek P, Kourilova X, Kalina M, Kovalcik A, Koller M, Nebesarova J, Krzyzanek V, Hrubanova K, Masilko J, Slaninova E, Obruca S. Polymers (Basel); 2020 May 29; 12(6):. PubMed ID: 32485983 [Abstract] [Full Text] [Related]
11. Increased recovery and improved purity of PHA from recombinant Cupriavidus necator. Anis SN, Iqbal NM, Kumar S, Al-Ashraf A. Bioengineered; 2013 May 29; 4(2):115-8. PubMed ID: 23018620 [Abstract] [Full Text] [Related]
12. Polyhydroxyalkanoate production by a novel bacterium Massilia sp. UMI-21 isolated from seaweed, and molecular cloning of its polyhydroxyalkanoate synthase gene. Han X, Satoh Y, Kuriki Y, Seino T, Fujita S, Suda T, Kobayashi T, Tajima K. J Biosci Bioeng; 2014 Nov 29; 118(5):514-9. PubMed ID: 24932969 [Abstract] [Full Text] [Related]
13. Response surface methodology optimization of polyhydroxyalkanoate production by Burkholderia cepacia BPT1213 using waste glycerol from palm oil-based biodiesel production. Mohd Zain NF, Paramasivam M, Tan JS, Lim V, Lee CK. Biotechnol Prog; 2021 Jan 29; 37(1):e3077. PubMed ID: 32894656 [Abstract] [Full Text] [Related]
14. Production and optimization of polyhydroxyalkanoates from non-edible Calophyllum inophyllum oil using Cupriavidus necator. Arumugam A, Senthamizhan SG, Ponnusami V, Sudalai S. Int J Biol Macromol; 2018 Jun 29; 112():598-607. PubMed ID: 29408394 [Abstract] [Full Text] [Related]
15. Integrated analysis of Whole genome sequencing and life cycle assessment for polyhydroxyalkanoates production by Cupriavidus sp. ISTL7. Gupta J, Rathour R, Maheshwari N, Shekhar Thakur I. Bioresour Technol; 2021 Oct 29; 337():125418. PubMed ID: 34153867 [Abstract] [Full Text] [Related]
16. Evaluation of BP-M-CPF4 polyhydroxyalkanoate (PHA) synthase on the production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil using Cupriavidus necator transformants. Tan HT, Chek MF, Lakshmanan M, Foong CP, Hakoshima T, Sudesh K. Int J Biol Macromol; 2020 Sep 15; 159():250-257. PubMed ID: 32417540 [Abstract] [Full Text] [Related]
17. Complete Genome Sequence of a Novel Polyhydroxyalkanoate (PHA) Producer, Jeongeupia sp. USM3 (JCM 19920) and Characterization of Its PHA Synthases. Zain NA, Ng LM, Foong CP, Tai YT, Nanthini J, Sudesh K. Curr Microbiol; 2020 Mar 15; 77(3):500-508. PubMed ID: 31893298 [Abstract] [Full Text] [Related]
18. The use of NaCl addition for the improvement of polyhydroxyalkanoate production by Cupriavidus necator. Passanha P, Kedia G, Dinsdale RM, Guwy AJ, Esteves SR. Bioresour Technol; 2014 Jul 15; 163():287-94. PubMed ID: 24835740 [Abstract] [Full Text] [Related]
19. Poly-β-hydroxyalkanoates production from cassava starch hydrolysate by Cupriavidus sp. KKU38. Poomipuk N, Reungsang A, Plangklang P. Int J Biol Macromol; 2014 Apr 15; 65():51-64. PubMed ID: 24412153 [Abstract] [Full Text] [Related]
20. Synthesis of high 4-hydroxybutyrate copolymer by Cupriavidus sp. transformants using one-stage cultivation and mixed precursor substrates strategy. Syafiq IM, Huong KH, Shantini K, Vigneswari S, Aziz NA, Amirul AA, Bhubalan K. Enzyme Microb Technol; 2017 Mar 15; 98():1-8. PubMed ID: 28110659 [Abstract] [Full Text] [Related] Page: [Next] [New Search]