These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
115 related items for PubMed ID: 37053540
1. High Internal Phase Emulsion Stabilization through Restricted Interdrop Fusion across Water Drainage Channels. Yang J, Kim H, Sung M, Cho I, Kim JW. Langmuir; 2023 Apr 25; 39(16):5670-5678. PubMed ID: 37053540 [Abstract] [Full Text] [Related]
2. Hydrophobically modified silica nanolaces-armored water-in-oil pickering emulsions with enhanced interfacial attachment energy. Choi J, Kim H, Lee H, Yi S, Hyun Lee J, Woong Kim J. J Colloid Interface Sci; 2023 Jul 25; 641():376-385. PubMed ID: 36940594 [Abstract] [Full Text] [Related]
4. Bacterial cellulose nanofibrils-armored Pickering emulsions with limited influx of metal ions. Seo HM, Seo M, Shin K, Choi S, Kim JW. Carbohydr Polym; 2021 Apr 15; 258():117730. PubMed ID: 33593584 [Abstract] [Full Text] [Related]
5. Comparison of cellulose and chitin nanofibers on Pickering emulsion stability-Investigation of size and surface wettability contribution. Liu Y, Shi Z, Zou Y, Yu J, Liu L, Fan Y. Int J Biol Macromol; 2023 Apr 30; 235():123754. PubMed ID: 36812965 [Abstract] [Full Text] [Related]
6. Hydrophobically modified chitosan microgels stabilize high internal phase emulsions with high compliance. Huang C, Sun F, Ma X, Gao C, Yang N, Nishinari K. Carbohydr Polym; 2022 Jul 15; 288():119277. PubMed ID: 35450663 [Abstract] [Full Text] [Related]
7. Dual Functions of TEMPO-Oxidized Cellulose Nanofibers in Oil-in-Water Emulsions: A Pickering Emulsifier and a Unique Dispersion Stabilizer. Goi Y, Fujisawa S, Saito T, Yamane K, Kuroda K, Isogai A. Langmuir; 2019 Aug 20; 35(33):10920-10926. PubMed ID: 31340122 [Abstract] [Full Text] [Related]
8. W/O high internal phase emulsion featuring by interfacial crystallization of diacylglycerol and different internal compositions. Liu Y, Lee WJ, Tan CP, Lai OM, Wang Y, Qiu C. Food Chem; 2022 Mar 15; 372():131305. PubMed ID: 34653777 [Abstract] [Full Text] [Related]
15. Hydrophobically modified chitosan biopolymer connects halloysite nanotubes at the oil-water interface as complementary pair for stabilizing oil droplets. Owoseni O, Su Y, Raghavan S, Bose A, John VT. J Colloid Interface Sci; 2022 Aug 15; 620():135-143. PubMed ID: 35421750 [Abstract] [Full Text] [Related]
16. A Convenient and Versatile Strategy for the Functionalization of Silica Foams Using High Internal Phase Emulsion Templates as Microreactors. Yu H, Wang Q, Zhao Y, Wang H. ACS Appl Mater Interfaces; 2020 Mar 25; 12(12):14607-14619. PubMed ID: 32150371 [Abstract] [Full Text] [Related]
18. Phase inversion of ionomer-stabilized emulsions to form high internal phase emulsions (HIPEs). Zhang T, Xu Z, Cai Z, Guo Q. Phys Chem Chem Phys; 2015 Jun 28; 17(24):16033-9. PubMed ID: 26028420 [Abstract] [Full Text] [Related]
19. Development of antioxidant Pickering high internal phase emulsions (HIPEs) stabilized by protein/polysaccharide hybrid particles as potential alternative for PHOs. Zeng T, Wu ZL, Zhu JY, Yin SW, Tang CH, Wu LY, Yang XQ. Food Chem; 2017 Sep 15; 231():122-130. PubMed ID: 28449988 [Abstract] [Full Text] [Related]
20. Determination of the Emulsion Stabilization Mechanisms of Quaternized Glucan of Curdlan via Rheological and Interfacial Characterization. Wu M, Zhang H. Langmuir; 2023 Feb 28; 39(8):3029-3044. PubMed ID: 36791267 [Abstract] [Full Text] [Related] Page: [Next] [New Search]