These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
138 related items for PubMed ID: 3707142
1. The control of malate dehydrogenase activity by adenine nucleotides in purified potato tuber (Solanum tuberosum L.) mitochondria. Rustin P, Valat M. Arch Biochem Biophys; 1986 May 15; 247(1):62-7. PubMed ID: 3707142 [Abstract] [Full Text] [Related]
2. Adenine nucleotide-dependent and redox-independent control of mitochondrial malate dehydrogenase activity in Arabidopsis thaliana. Yoshida K, Hisabori T. Biochim Biophys Acta; 2016 Jun 15; 1857(6):810-8. PubMed ID: 26946085 [Abstract] [Full Text] [Related]
3. Relationship between activation state of pyruvate dehydrogenase complex and rate of pyruvate oxidation in isolated cerebro-cortical mitochondria: effects of potassium ions and adenine nucleotides. Lai JC, Sheu KF. J Neurochem; 1985 Dec 15; 45(6):1861-8. PubMed ID: 3840524 [Abstract] [Full Text] [Related]
4. Succinate-driven reverse electron transport in the respiratory chain of plant mitochondria. The effects of rotenone and adenylates in relation to malate and oxaloacetate metabolism. Rustin P, Lance C. Biochem J; 1991 Feb 15; 274 ( Pt 1)(Pt 1):249-55. PubMed ID: 2001241 [Abstract] [Full Text] [Related]
5. The effects of adenine nucleotides on NADH binding to mitochondrial malate dehydrogenase. Oza NB, Shore JD. Arch Biochem Biophys; 1973 Jan 15; 154(1):360-5. PubMed ID: 4347684 [No Abstract] [Full Text] [Related]
11. Photosynthesis in Phosphoenolpyruvate carboxykinase-type C4 plants: mechanism and regulation of C4 acid decarboxylation in bundle sheath cells. Carnal NW, Agostino A, Hatch MD. Arch Biochem Biophys; 1993 Nov 01; 306(2):360-7. PubMed ID: 8215437 [Abstract] [Full Text] [Related]
12. Adenine nucleotide inhibition of pea malate dehydrogenase. Kuramitsu HK. Arch Biochem Biophys; 1968 Apr 01; 125(1):383-4. PubMed ID: 4296958 [No Abstract] [Full Text] [Related]
13. Metabolism of pyruvate and malate by isolated fat-cell mitochondria. Martin BR, Denton RM. Biochem J; 1971 Nov 01; 125(1):105-13. PubMed ID: 5158897 [Abstract] [Full Text] [Related]
14. Factors affecting the translocation of oxaloacetate and L-malate into rat liver mitochondria. Haslam JM, Griffiths DE. Biochem J; 1968 Oct 01; 109(5):921-8. PubMed ID: 4235143 [Abstract] [Full Text] [Related]
15. Adenine nucleotide control of heart mitochondrial oscillations. Gooch VD, Packer L. Biochim Biophys Acta; 1971 Aug 06; 245(1):17-20. PubMed ID: 5132470 [No Abstract] [Full Text] [Related]
16. Respiratory properties and malate metabolism in Percoll-purified mitochondria isolated from pineapple, Ananas comosus (L.) Merr. cv. smooth cayenne. Hong HT, Nose A, Agarie S. J Exp Bot; 2004 Oct 06; 55(406):2201-11. PubMed ID: 15361538 [Abstract] [Full Text] [Related]
17. Direct demonstration of enol-oxaloacetate as an immediate product of malate oxidation by the mammalian succinate dehydrogenase. Panchenko MV, Vinogradov AD. FEBS Lett; 1991 Jul 29; 286(1-2):76-8. PubMed ID: 1864383 [Abstract] [Full Text] [Related]
18. Steroid hydroxylation and oxidative phosphorylation in human adrenal cortex mitochondria. Sauer LA. Endocrinology; 1971 Feb 29; 88(2):318-24. PubMed ID: 4395505 [No Abstract] [Full Text] [Related]
19. Stimulatory effect of ADP, ATP, NAD(P) on pyruvate production from malate by uncoupled human placental mitochondria. Swierczyński J, Aleksandrowicz Z, Zelewski L. Biochem Med Metab Biol; 1987 Oct 29; 38(2):156-64. PubMed ID: 3675918 [Abstract] [Full Text] [Related]