These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
190 related items for PubMed ID: 37083829
1. Comparative analysis of gene ontology-based semantic similarity measurements for the application of identifying essential proteins. Xue X, Zhang W, Fan A. PLoS One; 2023; 18(4):e0284274. PubMed ID: 37083829 [Abstract] [Full Text] [Related]
2. An improved method for scoring protein-protein interactions using semantic similarity within the gene ontology. Jain S, Bader GD. BMC Bioinformatics; 2010 Nov 15; 11():562. PubMed ID: 21078182 [Abstract] [Full Text] [Related]
3. GO functional similarity clustering depends on similarity measure, clustering method, and annotation completeness. Liu M, Thomas PD. BMC Bioinformatics; 2019 Mar 27; 20(1):155. PubMed ID: 30917779 [Abstract] [Full Text] [Related]
4. Improving automatic GO annotation with semantic similarity. Sarker B, Khare N, Devignes MD, Aridhi S. BMC Bioinformatics; 2022 Dec 12; 23(Suppl 2):433. PubMed ID: 36510133 [Abstract] [Full Text] [Related]
5. TopoICSim: a new semantic similarity measure based on gene ontology. Ehsani R, Drabløs F. BMC Bioinformatics; 2016 Jul 29; 17(1):296. PubMed ID: 27473391 [Abstract] [Full Text] [Related]
6. Evaluating the significance of protein functional similarity based on gene ontology. Konopka BM, Golda T, Kotulska M. J Comput Biol; 2014 Nov 29; 21(11):809-22. PubMed ID: 25188814 [Abstract] [Full Text] [Related]
7. Handling Big Data Scalability in Biological Domain Using Parallel and Distributed Processing: A Case of Three Biological Semantic Similarity Measures. Almasoud AM, Al-Khalifa HS, Al-Salman AS. Biomed Res Int; 2019 Nov 29; 2019():6750296. PubMed ID: 30809545 [Abstract] [Full Text] [Related]
8. Filtering Gene Ontology semantic similarity for identifying protein complexes in large protein interaction networks. Wang J, Xie D, Lin H, Yang Z, Zhang Y. Proteome Sci; 2012 Jun 21; 10 Suppl 1(Suppl 1):S18. PubMed ID: 22759576 [Abstract] [Full Text] [Related]
9. Assessment of Semantic Similarity between Proteins Using Information Content and Topological Properties of the Gene Ontology Graph. Dutta P, Basu S, Kundu M. IEEE/ACM Trans Comput Biol Bioinform; 2018 Jun 21; 15(3):839-849. PubMed ID: 28371781 [Abstract] [Full Text] [Related]
10. Interspecies gene function prediction using semantic similarity. Yu G, Luo W, Fu G, Wang J. BMC Syst Biol; 2016 Dec 23; 10(Suppl 4):121. PubMed ID: 28155711 [Abstract] [Full Text] [Related]
11. Improving GO semantic similarity measures by exploring the ontology beneath the terms and modelling uncertainty. Yang H, Nepusz T, Paccanaro A. Bioinformatics; 2012 May 15; 28(10):1383-9. PubMed ID: 22522134 [Abstract] [Full Text] [Related]
12. Correlation between gene expression and GO semantic similarity. Sevilla JL, Segura V, Podhorski A, Guruceaga E, Mato JM, Martínez-Cruz LA, Corrales FJ, Rubio A. IEEE/ACM Trans Comput Biol Bioinform; 2005 May 15; 2(4):330-8. PubMed ID: 17044170 [Abstract] [Full Text] [Related]
13. A novel essential protein identification method based on PPI networks and gene expression data. Zhong J, Tang C, Peng W, Xie M, Sun Y, Tang Q, Xiao Q, Yang J. BMC Bioinformatics; 2021 May 13; 22(1):248. PubMed ID: 33985429 [Abstract] [Full Text] [Related]
14. Integration of anatomy ontology data with protein-protein interaction networks improves the candidate gene prediction accuracy for anatomical entities. Fernando PC, Mabee PM, Zeng E. BMC Bioinformatics; 2020 Oct 07; 21(1):442. PubMed ID: 33028186 [Abstract] [Full Text] [Related]
15. An improved approach to infer protein-protein interaction based on a hierarchical vector space model. Zhang J, Jia K, Jia J, Qian Y. BMC Bioinformatics; 2018 Apr 27; 19(1):161. PubMed ID: 29699476 [Abstract] [Full Text] [Related]
16. Investigating Correlation between Protein Sequence Similarity and Semantic Similarity Using Gene Ontology Annotations. Ikram N, Qadir MA, Afzal MT. IEEE/ACM Trans Comput Biol Bioinform; 2018 Apr 27; 15(3):905-912. PubMed ID: 28436885 [Abstract] [Full Text] [Related]
17. Improving the measurement of semantic similarity by combining gene ontology and co-functional network: a random walk based approach. Peng J, Zhang X, Hui W, Lu J, Li Q, Liu S, Shang X. BMC Syst Biol; 2018 Mar 19; 12(Suppl 2):18. PubMed ID: 29560823 [Abstract] [Full Text] [Related]
18. Multi-Factored Gene-Gene Proximity Measures Exploiting Biological Knowledge Extracted from Gene Ontology: Application in Gene Clustering. Acharya S, Saha S, Pradhan P. IEEE/ACM Trans Comput Biol Bioinform; 2020 Mar 19; 17(1):207-219. PubMed ID: 29994130 [Abstract] [Full Text] [Related]
19. Influence of the go-based semantic similarity measures in multi-objective gene clustering algorithm performance. Parraga-Alava J, Inostroza-Ponta M. J Bioinform Comput Biol; 2020 Dec 19; 18(6):2050038. PubMed ID: 33148094 [Abstract] [Full Text] [Related]
20. Measuring semantic similarities by combining gene ontology annotations and gene co-function networks. Peng J, Uygun S, Kim T, Wang Y, Rhee SY, Chen J. BMC Bioinformatics; 2015 Feb 14; 16():44. PubMed ID: 25886899 [Abstract] [Full Text] [Related] Page: [Next] [New Search]