These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


167 related items for PubMed ID: 3708637

  • 1. Biochemical mechanisms of acute contractile failure in the hypoxic rat heart.
    Matthews PM, Taylor DJ, Radda GK.
    Cardiovasc Res; 1986 Jan; 20(1):13-9. PubMed ID: 3708637
    [Abstract] [Full Text] [Related]

  • 2. The role of accumulation of sodium and calcium on contractile failure of the hypoxic/reoxygenated heart.
    Tanonaka K, Niwa T, Takeo S.
    Jpn Heart J; 1996 Jan; 37(1):105-17. PubMed ID: 8632618
    [Abstract] [Full Text] [Related]

  • 3. Contractile failure and high-energy phosphate turnover during hypoxia: 31P-NMR surface coil studies in living rat.
    Bittl JA, Balschi JA, Ingwall JS.
    Circ Res; 1987 Jun; 60(6):871-8. PubMed ID: 2954720
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Regulation of systolic force and control of free energy of ATP-hydrolysis in hypoxic hearts.
    Kammermeier H, Roeb E, Jüngling E, Meyer B.
    J Mol Cell Cardiol; 1990 Jun; 22(6):707-13. PubMed ID: 2231738
    [Abstract] [Full Text] [Related]

  • 8. Myocardial adaptation during acute hibernation: mechanisms of phosphocreatine recovery.
    Schaefer S, Carr LJ, Kreutzer U, Jue T.
    Cardiovasc Res; 1993 Nov; 27(11):2044-51. PubMed ID: 8287416
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Alteration of the cytosolic-mitochondrial distribution of high-energy phosphates during global myocardial ischemia may contribute to early contractile failure.
    Rauch U, Schulze K, Witzenbichler B, Schultheiss HP.
    Circ Res; 1994 Oct; 75(4):760-9. PubMed ID: 7923621
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Determination of buffering capacity of rat myocardium during ischemia.
    Wolfe CL, Gilbert HF, Brindle KM, Radda GK.
    Biochim Biophys Acta; 1988 Aug 19; 971(1):9-20. PubMed ID: 2841984
    [Abstract] [Full Text] [Related]

  • 14. Interaction of hypoxia and aging in the heart: analysis of high energy phosphate content.
    Bak MI, Wei JY, Ingwall JS.
    J Mol Cell Cardiol; 1998 Mar 19; 30(3):661-72. PubMed ID: 9515041
    [Abstract] [Full Text] [Related]

  • 15. A nuclear magnetic resonance study of metabolism in the ferret heart during hypoxia and inhibition of glycolysis.
    Allen DG, Morris PG, Orchard CH, Pirolo JS.
    J Physiol; 1985 Apr 19; 361():185-204. PubMed ID: 3989725
    [Abstract] [Full Text] [Related]

  • 16. Sustained function of normoxic hearts depleted in ATP and phosphocreatine: a 31P-NMR study.
    Hoerter JA, Lauer C, Vassort G, Guéron M.
    Am J Physiol; 1988 Aug 19; 255(2 Pt 1):C192-201. PubMed ID: 3407764
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Myocardial performance and free energy of ATP-hydrolysis in isolated rat hearts during graded hypoxia, reoxygenation and high Ke+-perfusion.
    Griese M, Perlitz V, Jüngling E, Kammermeier H.
    J Mol Cell Cardiol; 1988 Dec 19; 20(12):1189-201. PubMed ID: 3249307
    [Abstract] [Full Text] [Related]

  • 20. Interrelationship between the free energy change of ATP-hydrolysis, cytosolic inorganic phosphate and cardiac performance during hypoxia and reoxygenation.
    Kammermeier H.
    Biomed Biochim Acta; 1987 Dec 19; 46(8-9):S499-504. PubMed ID: 3435508
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.