These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
120 related items for PubMed ID: 37087642
1. Spatial scale applicability of 4-Scale geometrical optics model canopy reflectance simulation. Wei M, Fan WY, Zhang HJ, Yu Y, Wu GM, Cheng TH. Ying Yong Sheng Tai Xue Bao; 2023 Mar; 34(3):605-613. PubMed ID: 37087642 [Abstract] [Full Text] [Related]
2. Estimation of forest canopy closure in northwest Yunnan based on multi-source remote sensing data colla-boration. Zhou WW, Shu QT, Wang SW, Yang ZD, Luo SL, Xu L, Xiao JN. Ying Yong Sheng Tai Xue Bao; 2023 Jul; 34(7):1806-1816. PubMed ID: 37694464 [Abstract] [Full Text] [Related]
3. [An Analysis of the Spectrums between Different Canopy Structures Based on Hyperion Hyperspectral Data in a Temperate Forest of Northeast China]. Yu QZ, Wang SQ, Huang K, Zhou L, Chen DC. Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jul; 35(7):1980-5. PubMed ID: 26717763 [Abstract] [Full Text] [Related]
4. [The research on bidirectional reflectance computer simulation of forest canopy at pixel scale]. Song JL, Wang JD, Shuai YM, Xiao ZQ. Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Aug; 29(8):2141-7. PubMed ID: 19839326 [Abstract] [Full Text] [Related]
5. [Effects of temporal and spatial variation of canopy structures and light conditions on population characteristics of Fargesia decurvata.]. Huang HM, Dong R, He DN, Xiang YR, Zhang XJ, Chen J, Tao JP. Ying Yong Sheng Tai Xue Bao; 2018 Jul; 29(7):2129-2138. PubMed ID: 30039649 [Abstract] [Full Text] [Related]
6. [Variation of leaf area index estimation in forests based on remote sensing images of different spatial scales.]. Liu T, Chen C, Fan WY, Mao XG, Yu Y. Ying Yong Sheng Tai Xue Bao; 2019 May; 30(5):1687-1698. PubMed ID: 31107026 [Abstract] [Full Text] [Related]
7. [Forest canopy leaf area index in Maoershan Mountain: ground measurement and remote sensing retrieval]. Zhu GL, Ju WM, Jm C, Fan WY, Zhou YL, Li XF, Li MZ. Ying Yong Sheng Tai Xue Bao; 2010 Aug; 21(8):2117-24. PubMed ID: 21043124 [Abstract] [Full Text] [Related]
9. Moisture content estimation of forest litter based on remote sensing data. Yang X, Yu Y, Hu H, Sun L. Environ Monit Assess; 2018 Jun 23; 190(7):421. PubMed ID: 29934742 [Abstract] [Full Text] [Related]
10. [Fraction of absorbed photosynthetically active radiation over summer maize canopy estimated by hyperspectral remote sensing under different drought conditions.]. Liu EH, Zhou GS, Zhou L. Ying Yong Sheng Tai Xue Bao; 2019 Jun 23; 30(6):2021-2029. PubMed ID: 31257775 [Abstract] [Full Text] [Related]
11. Chlorophyll content retrieval from hyperspectral remote sensing imagery. Yang X, Yu Y, Fan W. Environ Monit Assess; 2015 Jul 23; 187(7):456. PubMed ID: 26095901 [Abstract] [Full Text] [Related]
12. [Ground diameter-height models of naturally regenerated seedlings and saplings under broad-leaved mixed forest in Maoershan Mountains.]. Wang JH, Dong LH, Li FR. Ying Yong Sheng Tai Xue Bao; 2019 Nov 23; 30(11):3811-3823. PubMed ID: 31833695 [Abstract] [Full Text] [Related]
13. A Simulation Study Using Terrestrial LiDAR Point Cloud Data to Quantify Spectral Variability of a Broad-Leaved Forest Canopy. Cifuentes R, Van der Zande D, Salas-Eljatib C, Farifteh J, Coppin P. Sensors (Basel); 2018 Oct 08; 18(10):. PubMed ID: 30297651 [Abstract] [Full Text] [Related]
14. Hybrid inversion of radiative transfer models based on high spatial resolution satellite reflectance data improves fractional vegetation cover retrieval in heterogeneous ecological systems after fire. Fernández-Guisuraga JM, Verrelst J, Calvo L, Suárez-Seoane S. Remote Sens Environ; 2021 Mar 15; 255():. PubMed ID: 36081599 [Abstract] [Full Text] [Related]
15. [Estimation of forest canopy chlorophyll content based on PROSPECT and SAIL models]. Yang XG, Fan WY, Yu Y. Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Nov 15; 30(11):3022-6. PubMed ID: 21284176 [Abstract] [Full Text] [Related]
16. A novel moisture adjusted vegetation index (MAVI) to reduce background reflectance and topographical effects on LAI retrieval. Zhu G, Ju W, Chen JM, Liu Y. PLoS One; 2014 Nov 15; 9(7):e102560. PubMed ID: 25025128 [Abstract] [Full Text] [Related]
17. [Nitrogen content inversion of wheat canopy leaf based on ground spectral reflectance data]. Song X, Xu DY, Huang SM, Huang CC, Zhang SQ, Guo DD, Zhang KK, Yue K. Ying Yong Sheng Tai Xue Bao; 2020 May 15; 31(5):1636-1644. PubMed ID: 32530242 [Abstract] [Full Text] [Related]
18. [Impacts of different alkaline soil on canopy spectral characteristics of overlying vegetation]. Jia KL, Zhang JH. Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Mar 15; 34(3):782-6. PubMed ID: 25208412 [Abstract] [Full Text] [Related]
19. [Application of near-surface remote sensing in monitoring the dynamics of forest canopy phenology.]. Liu F, Wang CK, Wang XC. Ying Yong Sheng Tai Xue Bao; 2018 Jun 15; 29(6):1768-1778. PubMed ID: 29974684 [Abstract] [Full Text] [Related]
20. Predicting grain protein content of field-grown winter wheat with satellite images and partial least square algorithm. Tan C, Zhou X, Zhang P, Wang Z, Wang D, Guo W, Yun F. PLoS One; 2020 Jun 15; 15(3):e0228500. PubMed ID: 32160185 [Abstract] [Full Text] [Related] Page: [Next] [New Search]