These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


250 related items for PubMed ID: 37092988

  • 1. The Periplasmic Tail-Specific Protease, Tsp, Is Essential for Secondary Differentiation in Chlamydia trachomatis.
    Swoboda AR, Wood NA, Saery EA, Fisher DJ, Ouellette SP.
    J Bacteriol; 2023 May 25; 205(5):e0009923. PubMed ID: 37092988
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Initial Characterization of the Two ClpP Paralogs of Chlamydia trachomatis Suggests Unique Functionality for Each.
    Wood NA, Chung KY, Blocker AM, Rodrigues de Almeida N, Conda-Sheridan M, Fisher DJ, Ouellette SP.
    J Bacteriol; 2019 Jan 15; 201(2):. PubMed ID: 30396899
    [Abstract] [Full Text] [Related]

  • 5. Impact of Active Metabolism on Chlamydia trachomatis Elementary Body Transcript Profile and Infectivity.
    Grieshaber S, Grieshaber N, Yang H, Baxter B, Hackstadt T, Omsland A.
    J Bacteriol; 2018 Jul 15; 200(14):. PubMed ID: 29735758
    [Abstract] [Full Text] [Related]

  • 6. Computational Modeling of the Chlamydial Developmental Cycle Reveals a Potential Role for Asymmetric Division.
    Chiarelli TJ, Grieshaber NA, Appa C, Grieshaber SS.
    mSystems; 2023 Apr 27; 8(2):e0005323. PubMed ID: 36927072
    [Abstract] [Full Text] [Related]

  • 7. Differential Effects of Small Molecule Inhibitors on the Intracellular Chlamydia Infection.
    Muñoz KJ, Tan M, Sütterlin C.
    mBio; 2022 Aug 30; 13(4):e0107622. PubMed ID: 35703434
    [Abstract] [Full Text] [Related]

  • 8. Molecular Characterization of the ClpC AAA+ ATPase in the Biology of Chlamydia trachomatis.
    Pan S, Jensen AA, Wood NA, Henrichfreise B, Brötz-Oesterhelt H, Fisher DJ, Sass P, Ouellette SP.
    mBio; 2023 Apr 25; 14(2):e0007523. PubMed ID: 36975997
    [Abstract] [Full Text] [Related]

  • 9. The chlamydial transcriptional regulator Euo is a key switch in cell form developmental progression but is not involved in the committed step to the formation of the infectious form.
    Appa CR, Grieshaber NA, Yang H, Omsland A, McCormick S, Chiarelli TJ, Grieshaber SS.
    mSphere; 2024 Sep 25; 9(9):e0043724. PubMed ID: 39140730
    [Abstract] [Full Text] [Related]

  • 10. Identification of the alternative sigma factor regulons of Chlamydia trachomatis using multiplexed CRISPR interference.
    Hatch ND, Ouellette SP.
    mSphere; 2023 Oct 24; 8(5):e0039123. PubMed ID: 37747235
    [Abstract] [Full Text] [Related]

  • 11. The Repressor Function of the Chlamydia Late Regulator EUO Is Enhanced by the Plasmid-Encoded Protein Pgp4.
    Zhang Q, Rosario CJ, Sheehan LM, Rizvi SM, Brothwell JA, He C, Tan M.
    J Bacteriol; 2020 Mar 26; 202(8):. PubMed ID: 31988079
    [Abstract] [Full Text] [Related]

  • 12. Single-Inclusion Kinetics of Chlamydia trachomatis Development.
    Chiarelli TJ, Grieshaber NA, Omsland A, Remien CH, Grieshaber SS.
    mSystems; 2020 Oct 13; 5(5):. PubMed ID: 33051378
    [Abstract] [Full Text] [Related]

  • 13. Fosmidomycin, an inhibitor of isoprenoid synthesis, induces persistence in Chlamydia by inhibiting peptidoglycan assembly.
    Slade JA, Brockett M, Singh R, Liechti GW, Maurelli AT.
    PLoS Pathog; 2019 Oct 13; 15(10):e1008078. PubMed ID: 31622442
    [Abstract] [Full Text] [Related]

  • 14. Oxidoreductase disulfide bond proteins DsbA and DsbB form an active redox pair in Chlamydia trachomatis, a bacterium with disulfide dependent infection and development.
    Christensen S, Halili MA, Strange N, Petit GA, Huston WM, Martin JL, McMahon RM.
    PLoS One; 2019 Oct 13; 14(9):e0222595. PubMed ID: 31536549
    [Abstract] [Full Text] [Related]

  • 15. A Dynamic, Ring-Forming Bactofilin Critical for Maintaining Cell Size in the Obligate Intracellular Bacterium Chlamydia trachomatis.
    Brockett MR, Lee J, Cox JV, Liechti GW, Ouellette SP.
    Infect Immun; 2021 Jul 15; 89(8):e0020321. PubMed ID: 33941579
    [Abstract] [Full Text] [Related]

  • 16. Requirement of GrgA for Chlamydia infectious progeny production, optimal growth, and efficient plasmid maintenance.
    Lu B, Wang Y, Wurihan W, Cheng A, Yeung S, Fondell JD, Lai Z, Wan D, Wu X, Li WV, Fan H.
    mBio; 2024 Jan 16; 15(1):e0203623. PubMed ID: 38112466
    [Abstract] [Full Text] [Related]

  • 17. Inclusion Membrane Growth and Composition Are Altered by Overexpression of Specific Inclusion Membrane Proteins in Chlamydia trachomatis L2.
    Olson-Wood MG, Jorgenson LM, Ouellette SP, Rucks EA.
    Infect Immun; 2021 Jun 16; 89(7):e0009421. PubMed ID: 33875478
    [Abstract] [Full Text] [Related]

  • 18. The Small Molecule H89 Inhibits Chlamydia Inclusion Growth and Production of Infectious Progeny.
    Muñoz KJ, Wang K, Sheehan LM, Tan M, Sütterlin C.
    Infect Immun; 2021 Jun 16; 89(7):e0072920. PubMed ID: 33820812
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. The trans-Golgi SNARE syntaxin 10 is required for optimal development of Chlamydia trachomatis.
    Lucas AL, Ouellette SP, Kabeiseman EJ, Cichos KH, Rucks EA.
    Front Cell Infect Microbiol; 2015 Jun 16; 5():68. PubMed ID: 26442221
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.